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Stability is crucial

bicycle

JAS 39 Gripen

Mercedes A-class

ABS brakes
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Input–output stability

u y = S(u)
S

A system is called input–output stable (or “L2 stable” or just “stable”)

if its L2 gain is finite:

‖S‖ = sup
u

‖S(u)‖2

‖u‖2

< ∞
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Input–output stability of LTI systems

For an LTI system S with impulse response g(t) and transfer function

G(s), the following stability conditions are equivalent:

‖S‖ is bounded

g(t) decays exponentially
∫

∞

0
|g(t)|dt is bounded

All poles of G(s) have negative real part
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Internal stability

The autonomous LTI system

dx

dt
= Ax

is called exponentially stable if the following equivalent conditions

hold:

There exist constants α, β > 0 such that

|x(t)| ≤ αe−βt|x(0)| for t ≥ 0

All eigenvalues of A have negative real part

(Exponential stability is a stronger form of asymptotic stability. For LTI systems, they

are equivalent.)
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Internal vs input–output stability

If ẋ = Ax is exponentially stable then G(s) = C(sI − A)−1B + D
is input–output stable.

Warning: The opposite is not always true! There may be unstable

pole-zero cancellations (that also render the system uncontrollable

and/or unobservable), and these may not be seen in the transfer

function!
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Stability of feedback loops

Assume scalar open-loop system G0(s)

♥ G0(s)✲✲

−1

✲

✛

✻
Σ

The closed-loop system is input–output stable if and only if all

solutions to the characteristic equation

1 + G0(s) = 0

are in the left half plane (i.e., have negative real part).
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The Nyquist criterion

If G0(s) is stable, then the closed-loop system [1 + G0(s)]−1 is stable

if and only if the Nyquist curve does not encircle −1.
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(Note: Matlab gives a Nyquist plot for both positive and negative frequencies)
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The Nyquist criterion (cont’d)

More generally, the difference between the number of unstable poles

in [1 + G0(s)]−1 and the number of unstable poles in G0(s) is equal

to the number of times the point −1 is encircled by the Nyquist plot in

the clockwise direction.
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Sensitivity and robustness

How sensitive is the closed-loop system to model errors?

How do we measure the “distance to instability”?

Is it possible to guarantee stability for all systems within some

distance from the ideal model?
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Amplitude and phase margin

Amplitude margin Am:

arg G(iω0) = −180◦, |G(iω0)| =
1

Am

Phase margin φm:

|G(iωc)| = 1, arg G(iωc) = φm − 180◦

−1

Re

Im

φm
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Mini-problem

❢ k(s + 1)

s2 + cs + 1
e−sT

−1

✲ ✲ ✲ ✲

✛

✻

Nominally k = 1, c = 1 and T = 0. How much margin is there in each

of the parameters before the system becomes unstable?
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How sensitive is the closed loop to changes in the plant?

❤ C(s) P (s)

−1

✲ ✲ ✲ ✲

✛

✻

r y

Y (s) =
P (s)C(s)

1 + P (s)C(s)
︸ ︷︷ ︸

T (s)

R(s)
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dT

dP
=

d

dP

(

1 − 1

1 + PC

)

=
C

(1 + PC)2
=

T

P (1 + PC)

Define the sensitivity function, S,

S :=
d(log T )

d(log P )
=

dT/T

dP/P
=

1

1 + PC

and the complementary sensitivity function T ,

T := 1 − S =
PC

1 + PC
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Interpretation as disturbance sensitivities

r

+

+++
e

C P

−1

u
l

y

n

m

Note that

T = −Gyn (sensitivity towards measurement noise)

S = Gym (sensitivity towards output load disturbance)

Fundamental limitation:

S + T = 1
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Interpretation as stability margin

The sensitivity function measures the distance between the Nyquist

plot and the point −1:

R−1 = sup
ω

∣
∣
∣
∣

1

1 + P (iω)C(iω)

∣
∣
∣
∣ = Ms

−1

Re

Im

R

P (iω)C(iω)
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Robustness analysis

How large plant uncertainty ∆(iω) can be tolerated without

risking instability?

❢ ❢P (iω)

−C(iω)

∆(iω)

✻
✲ ❄

✛

✲

✲

✲

v w
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The Small Gain Theorem

r1

r2

e1

e2

S1

S2

Assume that S1 and S2 are input-output stable. If ‖S1‖ · ‖S2‖ < 1,

then the gain from (r1, r2) to (e1, e2) in the closed-loop system is

finite.

Note 1: The theorem applies also to nonlinear, time-varying, and

multivariable systems

Note 2: The stability condition is sufficient but not necessary, so

the results may be conservative
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Proof sketch

e1 = r1 + S2(r2 + S1(e1))

‖e1‖ ≤ ‖r1‖ + ‖S2‖
(

‖r2‖ + ‖S1‖ · ‖e1‖
)

‖e1‖ ≤ ‖r1‖ + ‖S2‖ · ‖r2‖
1 − ‖S1‖ · ‖S2‖

This shows bounded gain from (r1, r2) to e1.

The gain to e2 is bounded in the same way.
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Application to robustness analysis

❢ ❢P (iω)

−C(iω)

∆(iω)

✻
✲ ❄

✛

✲

✲

✲

v w

The diagram can be redrawn as

✛

v w
✲ ∆ ✲

−PC
1+PC

✲
✻
❡
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Application to robustness analysis

✛

v w
✲ ∆ ✲

−PC
1+PC

✲
✻
❡

The Small Gain Theorem guarantees stability if

‖∆(iω)‖∞ ·
∥
∥
∥
∥

P (iω)C(iω)

1 + P (iω)C(iω)

∥
∥
∥
∥

∞

< 1
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Gain of multivariable systems

Recall from Lecture 1 that

||S|| = sup
ω

|G(iω)| = ||G||∞

for a stable LTI system S.

How to calculate |G(iω)| for a multivariable system?
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Vector norm and matrix gain

For a vector x ∈ C
n, we use the 2-norm

|x| =
√

x∗x =
√

|x1|2 + · · · + |xn|2

For a matrix A ∈ C
n×m, we use the L2-induced norm

‖A‖ := sup
x

|Ax|
|x| = sup

x

√

x∗A∗Ax

x∗x
=

√

λ̄(A∗A)

λ̄(A∗A) denotes the largest eigenvalue of A∗A. The ratio |Ax|/|x| is

maximized when x is a corresponding eigenvector.

(A∗ denotes the conjugate transpose of A)
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Example: Different gains in different directions:

[
y1

y2

]

=

[
2 4
0 3

] [
u1

u2

]
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Input u= [0.309     0.951]
T
,   |u|= 1

−15 −10 −5 0 5 10 15
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5

(red):eigenvectors ; (blue): V ; (green): U    A=U*S*V
T
 

y
2

y=Gu = [4.42      2.85]
T
,      |y|= 5.26

Example: Matlab demoAutomatic Control LTH, 2016 FRTN10 Multivariable Control, Lecture 2



Singular Values

For a matrix A, its singular values σi are defined as

σi =
√

λi

where λi are the eigenvalues of A∗A.

Let σ̄(A) denote the largest singular value and σ
¯
(A) the smallest

singular value.

For a linear map y = Au, it holds that

σ
¯
(A) ≤ |y]

|u| ≤ σ̄(A)

The singular values are typically computed using singular value decomposition (SVD):

A = UΣV ∗
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SVD example

Matlab code for singular value decomposition of the matrix

A =

[
2 4

0 3

]

SVD:

A = U · S · V ∗

where both the matrices U and V are unitary (i.e. have or-

thonormal columns s.t. V ∗
· V = I) and S is the diagonal

matrix with (sorted decreasing) singular values σi.

Multiplying A with a input vector along the first column in

V gives

A · V(:,1) = USV ∗
· V(:,1) =

= US

[
1

0

]

= U(:,1) · σ1

That is, we get maximal gain σ1 in the output direction

U(:,1) if we use an input in direction V(:,1) (and minimal

gain σn = σ2 if we use the last column V(:,n) = V(:,2)).

>> A=[2 4 ; 0 3]

A =

2 4

0 3

>> [U,S,V]=svd(A)

U =

0.8416 -0.5401

0.5401 0.8416

S =

5.2631 0

0 1.1400

V =

0.3198 -0.9475

0.9475 0.3198

>> A*V(:,1)

ans =

4.4296

2.8424

>> U(:,1)*S(1,1)

ans =

4.4296

2.8424
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Example: Gain of multivariable system

Consider the transfer function matrix

G(s) =






2

s + 1

4

2s + 1
s

s2 + 0.1s + 1

3

s + 1






>> s=tf(’s’)

>> G=[ 2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];

>> sigma(G) % plot sigma values of G wrt fq

>> grid on

>> norm(G,inf) % infinity norm = system gain

ans =

10.3577

Automatic Control LTH, 2016 FRTN10 Multivariable Control, Lecture 2



Singular Values

Frequency (rad/sec)
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System: G
Frequency (rad/sec): 0.0106
Singular Value (abs): 5.26

System: G
Frequency (rad/sec): 0.0101
Singular Value (abs): 1.14

System: G
Frequency (rad/sec): 0.0106
Singular Value (abs): 1.14

The singular values of the tranfer function matrix (prev slide). Note that

G(0)= [2 4 ; 0 3] which corresponds to A in the SVD-example above.

‖G‖∞ = 10.3577.
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