FRTN10 Multivariable Control, Lecture 2

Automatic Control LTH, 2016

Course Outline

L1-L5 Specifications, models and loop-shaping by hand

- Introduction
- Stability and robustness
- Specifications and disturbance models
 - Control synthesis in frequency domain
- Case study

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

Lecture 2 – Outline

- Sensitivity and robustness
- The Small Gain Theorem
- Singular values

Lecture 2 – Outline

Stability is crucial

Input-output stability

$$\begin{array}{c|c} u \\ \hline \\ \mathcal{S} \\ \hline \\ \mathcal{S}$$

A system is called **input–output stable** (or " \mathcal{L}_2 stable" or just "stable") if its \mathcal{L}_2 gain is finite:

$$\|\mathcal{S}\| = \sup_{u} \frac{\|\mathcal{S}(u)\|_2}{\|u\|_2} < \infty$$

Input–output stability of LTI systems

For an LTI system S with impulse response g(t) and transfer function G(s), the following stability conditions are equivalent:

- $\|\mathcal{S}\|$ is bounded
- g(t) decays exponentially
- $\int_0^\infty |g(t)| dt$ is bounded
- All poles of G(s) have negative real part

Internal stability

The autonomous LTI system

$$\frac{dx}{dt} = Ax$$

is called **exponentially stable** if the following equivalent conditions hold:

• There exist constants $\alpha, \beta > 0$ such that

 $|x(t)| \le \alpha e^{-\beta t} |x(0)| \qquad \text{ for } t \ge 0$

All eigenvalues of A have negative real part

(Exponential stability is a stronger form of asymptotic stability. For LTI systems, they are equivalent.)

Internal vs input-output stability

If $\dot{x} = Ax$ is exponentially stable then $G(s) = C(sI - A)^{-1}B + D$ is input–output stable.

Warning: The opposite is not always true! There may be unstable pole-zero cancellations (that also render the system uncontrollable and/or unobservable), and these may not be seen in the transfer function!

Stability of feedback loops

Assume scalar open-loop system $G_0(s)$

The closed-loop system is input–output stable **if and only if** all solutions to the characteristic equation

$$1 + G_0(s) = 0$$

are in the left half plane (i.e., have negative real part).

The Nyquist criterion

If $G_0(s)$ is stable, then the closed-loop system $[1 + G_0(s)]^{-1}$ is stable if and only if the Nyquist curve does not encircle -1.

(Note: Matlab gives a Nyquist plot for both positive and negative frequencies)

The Nyquist criterion (cont'd)

More generally, the difference between the number of unstable poles in $[1 + G_0(s)]^{-1}$ and the number of unstable poles in $G_0(s)$ is equal to the number of times the point -1 is encircled by the Nyquist plot in the clockwise direction.

Lecture 2 – Outline

Sensitivity and robustness

- How sensitive is the closed-loop system to model errors?
- How do we measure the "distance to instability"?
- Is it possible to guarantee stability for all systems within some distance from the ideal model?

Amplitude and phase margin

Amplitude margin A_m :

 $\arg G(i\omega_0) = -180^\circ, \quad |G(i\omega_0)| = \frac{1}{A_m}$

Phase margin ϕ_m :

 $|G(i\omega_c)| = 1$, $\arg G(i\omega_c) = \phi_m - 180^\circ$

Mini-problem

Nominally k = 1, c = 1 and T = 0. How much margin is there in each of the parameters before the system becomes unstable?

Automatic Control LTH, 2016

FRTN10 Multivariable Control, Lecture 2

How sensitive is the closed loop to changes in the plant?

$$\frac{dT}{dP} = \frac{d}{dP} \left(1 - \frac{1}{1 + PC} \right) = \frac{C}{(1 + PC)^2} = \frac{T}{P(1 + PC)}$$

Define the sensitivity function, S,

$$S := \frac{d(\log T)}{d(\log P)} = \frac{dT/T}{dP/P} = \frac{1}{1+PC}$$

and the complementary sensitivity function T,

$$T := 1 - S = \frac{PC}{1 + PC}$$

Interpretation as disturbance sensitivities

• $T = -G_{yn}$ (sensitivity towards measurement noise)

• $S = G_{ym}$ (sensitivity towards output load disturbance)

Fundamental limitation:

$$S+T=1$$

Interpretation as stability margin

The sensitivity function measures the distance between the Nyquist plot and the point -1:

Lecture 2 – Outline

Robustness analysis

How large plant uncertainty $\Delta(i\omega)$ can be tolerated without risking instability?

The Small Gain Theorem

Assume that S_1 and S_2 are input-output stable. If $||S_1|| \cdot ||S_2|| < 1$, then the gain from (r_1, r_2) to (e_1, e_2) in the closed-loop system is finite.

- Note 1: The theorem applies also to nonlinear, time-varying, and multivariable systems
- Note 2: The stability condition is sufficient but not necessary, so the results may be conservative

The Small Gain Theorem

Assume that S_1 and S_2 are input-output stable. If $||S_1|| \cdot ||S_2|| < 1$, then the gain from (r_1, r_2) to (e_1, e_2) in the closed-loop system is finite.

- Note 1: The theorem applies also to nonlinear, time-varying, and multivariable systems
- Note 2: The stability condition is sufficient but not necessary, so the results may be conservative

Proof sketch

$$e_{1} = r_{1} + \mathcal{S}_{2}(r_{2} + \mathcal{S}_{1}(e_{1}))$$
$$\|e_{1}\| \leq \|r_{1}\| + \|\mathcal{S}_{2}\| \left(\|r_{2}\| + \|\mathcal{S}_{1}\| \cdot \|e_{1}\|\right)$$
$$\|e_{1}\| \leq \frac{\|r_{1}\| + \|\mathcal{S}_{2}\| \cdot \|r_{2}\|}{1 - \|\mathcal{S}_{1}\| \cdot \|\mathcal{S}_{2}\|}$$

This shows bounded gain from (r_1, r_2) to e_1 .

The gain to e_2 is bounded in the same way.

Application to robustness analysis

Application to robustness analysis

The Small Gain Theorem guarantees stability if

$$\|\Delta(i\omega)\|_{\infty} \cdot \left\|\frac{P(i\omega)C(i\omega)}{1+P(i\omega)C(i\omega)}\right\|_{\infty} < 1$$

Lecture 2 – Outline

Gain of multivariable systems

Recall from Lecture 1 that

$$||\mathcal{S}|| = \sup_{\omega} |G(i\omega)| = ||G||_{\infty}$$

for a stable LTI system S.

How to calculate $|G(i\omega)|$ for a multivariable system?

Vector norm and matrix gain

For a vector $x \in \mathbf{C}^n$, we use the 2-norm

$$|x| = \sqrt{x^*x} = \sqrt{|x_1|^2 + \dots + |x_n|^2}$$

For a matrix $A \in \mathbf{C}^{n \times m}$, we use the L_2 -induced norm

$$||A|| := \sup_{x} \frac{|Ax|}{|x|} = \sup_{x} \sqrt{\frac{x^*A^*Ax}{x^*x}} = \sqrt{\bar{\lambda}(A^*A)}$$

 $\lambda(A^*A)$ denotes the largest eigenvalue of A^*A . The ratio |Ax|/|x| is maximized when x is a corresponding eigenvector.

 $(A^*$ denotes the **conjugate transpose** of A)

Example: Different gains in different directions: $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$

Singular Values

For a matrix A, its singular values σ_i are defined as

$$\sigma_i = \sqrt{\lambda_i}$$

where λ_i are the eigenvalues of A^*A .

Let $\bar{\sigma}(A)$ denote the largest singular value and $\bar{\sigma}(A)$ the smallest singular value.

For a linear map y = Au, it holds that

$$\bar{\sigma}(A) \le \frac{|y|}{|u|} \le \bar{\sigma}(A)$$

The singular values are typically computed using singular value decomposition (SVD):

 $A = U\Sigma V^*$

Singular Values

For a matrix A, its singular values σ_i are defined as

$$\sigma_i = \sqrt{\lambda_i}$$

where λ_i are the eigenvalues of A^*A .

Let $\bar{\sigma}(A)$ denote the largest singular value and $\bar{\sigma}(A)$ the smallest singular value.

For a linear map y = Au, it holds that

$$\bar{\sigma}(A) \le \frac{|y|}{|u|} \le \bar{\sigma}(A)$$

The singular values are typically computed using singular value decomposition (SVD):

$$A = U\Sigma V^*$$

SVD example

Matlab code for singular value decomposition of the matrix

$$A = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$$

SVD:

$$A = U \cdot S \cdot V$$

where both the matrices U and V are unitary (i.e. have orthonormal columns s.t. $V^* \cdot V = I$) and S is the diagonal matrix with (sorted decreasing) singular values σ_i . Multiplying A with a input vector along the first column in V gives

That is, we get maximal gain σ_1 in the output direction $U_{(:,1)}$ if we use an input in direction $V_{(:,1)}$ (and minimal gain $\sigma_n = \sigma_2$ if we use the last column $V_{(:,n)} = V_{(:,2)}$).

>> A=[2 4 ;	03]
A =	
2	4
0	3
>> [U,S,V]=	svd(A)
U =	
0.8416	-0.5401
0.5401	0.8416
S =	
5.2631	0
	1.1400
V =	
0.3198	-0.9475
0.9475	0.3198
>> A*V(:.1))
ans =	
4,4296	
2.8424	
>> U(:.1)*S	S(1,1)
ans =	
4.4296	
2.8424	

Example: Gain of multivariable system

Consider the transfer function matrix

$$G(s) = \begin{bmatrix} \frac{2}{s+1} & \frac{4}{2s+1} \\ \frac{s}{s^2+0.1s+1} & \frac{3}{s+1} \end{bmatrix}$$

>> s=tf('s')
>> G=[2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain
ans =
 10.3577

The singular values of the tranfer function matrix (prev slide). Note that G(0)= [2 4 ; 0 3] which corresponds to A in the SVD-example above. $||G||_{\infty} = 10.3577.$