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Prerequisites

FRT010 Automatic Control, Basie Course or FRTN25 Automatic
Process Control is required prior knowledge.

It is assumed that you have taken the basic courses in mathematics,
including linear algebra and calculus in several variables, and
preferably also systems & transforms or linear systems.

Course material

All course material is available in English. Most lectures are
covered by the following textbook sold by KFS AB:

◮ Glad & Ljung: Reglerteori – Flervariabla och olinjära

metoder, (2 uppl.), Studentlitteratur, 2003.

◮ English edition: Glad & Ljung: Control Theory –

Multivariable and Nonlinear Methods, Taylor & Francis
Ltd / CRC Press

All other material on the homepage:

◮ Lecture slides (also handed out)

◮ Lecture notes (for Lectures 1–8, 13)

◮ Exercise problems with solutions

◮ Laboratory assignments

http://www.control.lth.se/course/FRTN10

Lectures

The lectures (30 hours in total) are given by Anton Cervin on Mondays
(w. 35–39, 41), Tuesdays (w. 35–36), and Thursdays (w. 35–41).

See the LTH schedule generator for details.

Exercise sessions and TAs

The exercise sessions (28 hours in total) are arranged in three groups:

Group Times Room Teaching Assistant

1 Wed 10–12, Fri 8–10 Lab A Marcus T. Andrén
2 Wed 13–15, Fri 10–12 Lab A Josefin Berner
3 Wed 15–17, Fri 13–15 Lab A Olof Troeng

Marcus T. Andrén Josefin Berner Olof Troeng

marcus@control.lth.se josefinb@control.lth.se oloft@control.lth.se
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Laboratory experiments

The three laboratory sessions (12 hours in total) are mandatory.
Booking lists are posted on the course homepage. You must sign up
before the first session starts. Before each session there are pre-lab
assignments that must be completed. No reports are required
afterwards.

Lab Weeks Booking Room Responsible Process

1 37–38 Aug 30 Lab C Olof Troeng Flexible linear servo
2 39–40 Sep 13 Lab C Josefin Berner Quadruple tank
3 41–42 Sep 27 Lab B Marcus T. Andrén Rotating crane

Exam

The exam is given on October 25 at 08:00–13:00.

A second occasion is on January 3, 2017.

The textbook, lecture notes, and lecture slides (with markings/notes)
are allowed on the exam. You may also bring an Automatic

Control—Collection of Formulae, standard mathematical tables
(TEFYMA), and a pocket calculator.

Use of computers in the course

◮ In our lab rooms, use your personal student account or a
common course account

◮ Matlab is used in both exercise sessions and laboratory sessions
◮ Control System Toolbox
◮ Simulink
◮ CVX (http://cvxr.com/cvx, used in exercise session 12)
◮ (Symbolic Math Toolbox)

Feedback and Q&A

For each course LTH uses the following feedback mechanisms

◮ CEQ (reporting / longer time scale)
◮ Student representatives (fast feedback)

◮ Election of student representative ("kursombud")

We will be using Piazza for Q&A:

https://piazza.com/lu.se/fall2016/frtn10/home

Please post your questions here!

Course registration

Course registration in Ladok will be performed on Wednesday.

Put a mark next to your name on the registration list (or fill in your
details on an empty row at the end).

If you decide to drop out during the first three weeks of the course, you
should notify us so that we can unregister you in Ladok.

Do not forget to do “terminsregistrering”!

Multivariable control – Example 1

Bathtub

Hot water

Cold water

Outlet

Temperature

Depth

Example 2: Rollover control

Vehicle

brake forces

steering angle

lateral velocity

yaw rate

Example 3: DVD reader

Pit

Track

0.74 µm

◮ 3.5 m/s speed along track

◮ 0.022 µm tracking tolerance

◮ 100 µm deviations at ~23 Hz due to
asymmetric discs
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Focus and tracking control

Radial electromagnet

Focus electromagnet

Springs

Light detectors

Laser

A B

C D

Tracks

Lens

PUH & Disk

vertical force

radial force

focus error

radial error

Example 4: Control of friction stir welding

Prototype FSW machine at the Swedish Nuclear Fuel and Waste
Management Company (SKB) in Oskarshamn

Control of friction stir welding

Measurement variables:

◮ Temperatures (3 sensors)

◮ Motor torque

◮ Shoulder depth

Control variables:

◮ Tool rotation speed

◮ Weld speed

◮ Axial force

Control objectives:

◮ Keep weld temperature at 845 ◦C

◮ Keep shoulder depth at 1 mm

Contents of the course

Despite its name, this course is not only about multivariable

control. You will also learn about:

◮ sensitivity and robustness

◮ design trade-offs and fundamental limitations

◮ stochastic control

◮ optimization of controllers

Outline of lectures

L1–L5 Specifications, models and loop-shaping by hand

L6–L8 Limitations on achievable performance

L9–L11 Controller optimization: analytic approach

L12–L14 Controller optimization: numerical approach

L15 Course review

Lecture 1: Systems and signals
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Lecture 4: Control synthesis in frequency domain Lecture 5: Case study

Radial electromagnet

Focus electromagnet

Springs

Light detectors

Laser

A B

C D

Tracks

Lens

PUH & Disk

vertical force

radial force

focus error

radial error

Lecture 6: Multivariable zeros, singular values, gramians
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Lecture 7: Fundamental limitations
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Lecture 8: Decentralized control

Process

C1

C2

C3

u1
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Lecture 9: Linear-quadratic optimal control
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0

(
xT Q1x + uT Q2u

)
dt

Lecture 10: Optimal observer-based feedback

P

Kalman

u y

x̂

v1
v2

P

Kalman

L
x̂

u

−

y

v1
v2

Lecture 11: More on LQG
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Lecture 12: Youla parametrization, internal model control

[
Pzw Pzu

Pyw Pyu

]

−C(s)
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ALL stabilizing controllers:

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)

Lecture 13: Synthesis by convex optimization

Minimize

∫ ∞

−∞
|Pzw(iω) + Pzu(iω)

Q(iω)︷ ︸︸ ︷∑

k

Qkφk(iω) Pyw(iω)|2dω
}

subject to constraints
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Time (sec)

A
m

pl
itu

de

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Bode Magnitude Diagram

Frequency (rad/sec)

M
ag

ni
tu

de
 (

ab
s)

10
0

10
1

10
−2

10
−1

10
0

10
1

Lecture 14: Controller simplification

C(s) = (s/1.3 + 1)(s/45 + 1)
(s/1.2 + 1)(s2 + 0.4s + 1.04)(s/50 + 1) ≈ s2 − 2.3s + 57

s2 + 0.41s + 1.1
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Systems

u y
S

A system is a mapping from the input signal u(t) to the
output signal y(t), −∞ < t < ∞:

y = S(u)

System properties

A system S is

◮ causal if y(t1) only depends on u(t), −∞ < t ≤ t1,
non-causal otherwise

◮ static if y(t1) only depends on u(t1),
dynamic otherwise

◮ discrete-time if u(t) and y(t) are only defined for a countable
set of discrete time instances t = tk, k = 0, ±1, ±2, . . .,
continuous-time otherwise

System properties (cont’d)

A system S is

◮ single-variable or scalar if u(t) and y(t) are scalar signals,
multivariable otherwise

◮ time-invariant if y(t) = S(u(t)) implies y(t + τ) = S(u(t + τ)),
time-varying otherwise

◮ linear if S(α1u1 + α2u2) = α1S(u1) + α2S(u2),
nonlinear otherwise

LTI system representations

We will mainly deal with continuous-time linear time-invariant (LTI)
systems in this course

For LTI systems, the same input–output mapping S can be
represented in a number of equivalent ways:

◮ linear ordinary differential equation

◮ linear state-space model

◮ transfer function

◮ impulse response

◮ step response

◮ frequency response

◮ . . .

State-space models

u y

x

S

Linear state-space model:

{
ẋ = Ax + Bu

y = Cx + Du

Solution:

y(t) = CeAtx(0) +
∫ t

0
CeA(t−τ)Bu(τ)dτ + Du(t)
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Mini-problem 1

ẋ1 = −x1 + 2x2 + u1 + u2 − u3

ẋ2 = −5x2 + 3u2 + u3

y1 = x1 + x2 + u3

y2 = 4x2 + 7u1

How many state variables, inputs and outputs?

Determine the matrices A, B, C, D to write the system as

{
ẋ = Ax + Bu

y = Cx + Du

Change of coordinates

{
ẋ = Ax + Bu

y = Cx + Du

Change of coordinates

z = Tx, T invertible

{
ż = T ẋ = T (Ax + Bu) = T (AT −1z + Bu) = TAT −1z + TBu

y = Cx + Du = CT −1z + Du

Note: There are infinitely many different state-space representations of
the same system S

Impulse response
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Common experiment in medicine and biology

g(t) =
∫ t

0
CeA(t−τ)Bδ(τ)dτ + Dδ(t) = CeAtB + Dδ(t)

y(t) =
∫ t

0
g(t − τ)u(τ)dτ = (g ∗ u)(t)

Step response
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Common experiment in process industry

y(t) =
∫ t

0
g(t − τ)u(τ)dτ =

∫ t

0
g(τ)dτ

Transfer function

U(s) Y (s)
G(s)

G(s) = L{g(t)}

y(t) = (g ∗ u)(t) ⇔ Y (s) = G(s)U(s)

Conversion from state-space form to transfer function:

G(s) = C(sI − A)−1B + D

Transfer function

A transfer function is rational if it can be written as

G(s) = B(s)
A(s)

where B(s) and A(s) are polynomials in s

It is proper if deg B ≤ deg A and strictly proper if deg B < deg A

A rational and proper transfer function can be converted to state-space
form (see Collection of Formulae)

Frequency response
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Assume stable transfer function G = Lg. Input u(t) = sin ωt gives

y(t) =
∫ t

0
g(τ)u(t − τ)dτ = Im

[∫ t

0
g(τ)e−iωτ dτ · eiωt

]

[t → ∞] = Im
(
G(iω)eiωt

)
= |G(iω)| sin

(
ωt + arg G(iω)

)

After a transient, also the output becomes sinusoidal

The Nyquist diagram
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The Bode diagram
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G = G1G2G3

{
log |G| = log |G1| + log |G2| + log |G3|
arg G = arg G1 + arg G2 + arg G3

Each new factors enter additively!
Hint: Set Matlab scales
» ctrlpref

Signal norm and system gain

ag replacements

u y
S

How to quantify

◮ the “size” of the signals u and y

◮ the “maximum amplification” between u and y

Signal norm and system gain

The L2 norm of a signal y(t) ∈ Rn is defined as

‖y‖2 :=
√∫ ∞

0
|y(t)|2dt =

√
1

2π

∫ ∞

−∞
|Y (iω)|2dω

The last equality is known as Parseval’s theorem

The L2 gain of a system S with input u and output S(u) is defined as

‖S‖ := sup
u

‖S(u)‖2
‖u‖2

Mini-problem 2

What are the gains of the following scalar LTI systems?

1. y(t) = −u(t) (a sign shift)

2. y(t) = u(t − T ) (a time delay)

3. y(t) =
∫ t

0
u(τ)dτ (an integrator)

4. y(t) =
∫ t

0
e−(t−τ)u(τ)dτ (a first order filter)

L2-gain for LTI systems

Consider a stable LTI system S with input u and output S(u) having
the transfer function G(s). Then

‖S‖ := sup
u

‖S(u)‖2
‖u‖2

= sup
ω

|G(iω)| := ‖G‖∞

Proof. Let y = S(u). Then

‖y‖2 = 1
2π

∫ ∞

−∞
|Y (iω)|2dω = 1

2π

∫ ∞

−∞
|G(iω)|2 · |U(iω)|2dω ≤ ‖G‖2

∞‖u‖2

The inequality is arbitrarily tight when u(t) is a sinusoid near the
maximizing frequency.

(How to interpret |G(iω)| for matrix transfer functions will be explained in Lecture 2.)
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