
Solutions to Exercise 1. Control in Matlab

1.1 >> A = [0 1; 1 0];

>> B = [1 0]’;

>> C = [0 1];

>> D = 0;

>> eig(A)

ans =

-1

1

1.2 >> sys = ss(A,B,C,D);

>> tf(sys)

Transfer function:

1

-------

s^2 - 1

1.3 >> zero(sys)

ans =

Empty matrix: 0-by-1

>> pole(sys)

ans =

-1

1

>> dcgain(sys)

ans =

-1

1.4 >> s = tf(’s’);

>> P = 1/(s^2+0.6*s+1)

Transfer function:

1

---------------

s^2 + 0.6 s + 1

>> P.InputDelay = 1.5

Transfer function:

1

exp(-1.5*s) * ---------------

s^2 + 0.6 s + 1

>> bode(P)
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Solutions to Exercise 1

>> grid

>> nyquist(P)

>> pzmap(P)

>> step(P)

As seen in the pole-zero map, the open-loop system is stable, as also indicated

by the step response. The Bode and Nyquist plots show that the closed-loop

system will be unstable.

1.5 >> Wc = ctrb(A,B);

>> rank(Wc)

ans =

2

Since the controllability matrix has full rank, the system is controllable.

>> p=[1 1.4 1];

>> L=place(A,B,roots(p))

L =

1.4000 2.0000

1.6 P = 1/(s^2+0.6*s+1);

>> C = 0.5*(1+4*s);

>> margin(C*P)

The amplitude margin is infinite, whereas the phase margin is 101○.

1.7 >> CLSYS = feedback(C*P,1)

Transfer function:

2 s + 0.5

-----------------

s^2 + 2.6 s + 1.5

>> CLSYS = minreal(C*P/(1+C*P))

Transfer function:

2 s + 0.5

-----------------

s^2 + 2.6 s + 1.5

1.8 >> step(CLSYS)

>> dcgain(CLSYS)

ans =

0.3333

1.9 >> A=[-1 1 0 -1/2 0; 4 -1 0 -25 8; 0 1 0 0 0; 0 0 0 -20 0; 0 0 0 0 -20];

>> B=[0 0; 3/2 1/2; 0 0; 20 0; 0 20];

>> C=[0 1 0 0 0; 0 0 1 0 0];

>> jas=ss(A,B,C,[0 0; 0 0]);

>> pole(jas)

ans =

0
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Solutions to Exercise 1

1.0000

-3.0000

-20.0000

-20.0000

>> rank(ctrb(jas))

ans =

5

>> rank(obsv(jas))

ans =

4

We see that the system is unstable. This means that without some type of

control, the plane will crash. Fortunately, the system is controllable, which

means that it is possible to stabilise the aircraft with the given actuators.

However, since we do not have observability, we need to have some other

combination of sensors if we to use feedback from observed states.

To get the transfer function, we use

>> G=tf(jas)

Transfer function from input 1 to output...

1.5 s^2 - 468.5 s - 510

#1: ------------------------

s^3 + 22 s^2 + 37 s - 60

1.5 s^2 - 468.5 s - 510

#2: ----------------------------

s^4 + 22 s^3 + 37 s^2 - 60 s

Transfer function from input 2 to output...

0.5 s^2 + 170.5 s + 170

#1: ------------------------

s^3 + 22 s^2 + 37 s - 60

0.5 s^2 + 170.5 s + 170

#2: ----------------------------

s^4 + 22 s^3 + 37 s^2 - 60 s

>> G(1,2) % To output 1 from input 2 (note the order of indexing)

Transfer function:

0.5 s^2 + 170.5 s + 170

------------------------

s^3 + 22 s^2 + 37 s - 60

1.10 >> G1 = 1/(s+1)^3

Transfer function:

1

---------------------

s^3 + 3 s^2 + 3 s + 1

>> pole(G1)

ans =

3
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-1.0000

-1.0000 + 0.0000i

-1.0000 - 0.0000i

>> G2 = zpk(1/(s+1)^3)

Zero/pole/gain:

1

-------

(s+1)^3

>> pole(G2)

ans =

-1.0000

-1.0000 + 0.0000i

-1.0000 - 0.0000i

>> G3 = 1/(s^3+2.99*s^2+3*s+1);

>> pole(G3)

ans =

-1.0888 + 0.2131i

-1.0888 - 0.2131i

-0.8124

>> G4 = 1/(s+0.99)^3;

>> pole(G4)

ans =

-0.9900 + 0.0000i

-0.9900 - 0.0000i

-0.9900

We see that the same small modification in a parameter, causes larger changes

in the dynamics when the system is represented as G3. The transfer function

form of G4 (three poles in the same spot as for G2), which can be kept with

the zpk command, is in general better numerically compared to the form in

which G3 is represented (the same form as the command tf gives).

1.11 >> Wo = obsv(A,C)

ans =

3 4

-3 -4

>> rank(Wo)

ans =

1

4



Solutions to Exercise 1

>> rank(ctrb(A,B))

ans =

1

Since neither the observability matrix nor the controllability matrix has full

rank, the system is neither observable nor controllable. It can be seen di-

rectly from the state equations, where we have two states that are completely

discoupled from each other and have the same eigenvalue. This means that

evolution of the states will look exactly the same for any control signal u(t)
(assuming that the initial state is at the origin). Therefore we will never be

able to control these states arbitrarily. We will only be able to control them

along some controllable subspace. The same goes for the observability.

1.12 The transfer function for the mass-spring system will be

>> zpk(ss(A,B,C,D))

Zero/pole/gain:

2

-----------

(s^2 + 20)

The transfer function of a PID controller is

R = K(sTi + 1+ s2TdTi)
sTi

and the closed-loop transfer function is

Gcl(s) =
R(s)P(s)

1+ R(s)P(s) =
2K(s2Td + s+ 1/Ti)

s3 + s22KTd + s(20+ 2K) + 2K/Ti

The closed-loop characteristic equation is then

s3 + s2(2KTd) + s(20+ 2K) + 2K/Ti = 0

Identify the coefficients and solve for K , Ti and Td as functions of ω and ζ :

K = 0.5(ω2 + 2ζω2 − 20)

Ti =
2K

ω3

Td =
2ζω +ω

2K

The closed-loop system is then

>> G_cl = feedback(R*P,1);

>> step(G_cl)

The specification is met for many different choices of ω and ζ . One choice can

be ω = 6 and ζ = 0.7.
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1.13 >> s = tf(’s’);

>> P = (3-s)/((s+1)*(s+2));

>> [A,B,C,D] = ssdata(P);

>> rank(ctrb(A,B))

ans =

2

>> p = [1 5.6 16];

>> L = place(A,B,roots(p));

The system is controllable, since the controllability matrix has full rank.

With the control law u(t) = −Lx+ r, the closed-loop system get the following

appearance

>> A_cl = A-B*L;

>> B_cl = B;

>> C_cl = C;

>> D_cl = 0;

>> G_cl = ss(A_cl,B_cl,C_cl,D_cl);

>> step(G_cl)

>> dcgain(G_cl)

ans =

0.1875

The system is non-minimum phase, which we can see directly since the process

has a zero in the right half plane.
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Solutions to Exercise 2. System Representations and

Stability

2.1 A state-space representation of the system is given by

[

ẋ1

ẋ2

]

=
[−2 1

0 −3

] [

x1

x2

]

+
[

1 0

1 2

] [

u1

u2

]





y1

y2

y3



 =





1 1

2 0

0 2





[

x1

x2

]

+





0 0

1 0

0 1





[

u1

u2

]

2.2 Laplace transformation of the differential equation gives

Y (s) = (b11s+ b12)
(s2 + a1s+ a2)

U1(s) +
(b21s+ b22)
(s2 + a1s+ a2)

U2(s)

The transfer matrix becomes

(

b11s+b12

s2+a1s+a2

b21s+b22

s2+a1s+a2

)

2.3 a. The equation can be written as

y = � ∗ u (2.1)

where �(t) = te−2t, t ≥ 0. Taking the Laplace transform of (2.1) gives with

u = r− y

Y (s) = 1

(s+ 2)2 (R(s) − Y (s))

Y (s) = 1

s2 + 4s+ 5
R(s)

b. The transfer function has poles in

s1 = −2+ i

s2 = −2− i

Since all poles have negative part the system is input-output stable.

Another way of checking stability of a second order system with characteristic

equation s2 + a1s+ a2 is that a1, a2 > 0.

c. Since the system is stable, the L2 gain is given by the supremum of the

transfer function gain, so we want to find the peak of the Bode amplitude

plot.

>> s = tf(’s’);

>> G = 1 / (s^2 + 4*s + 5);

>> bode(G)
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Figure 2.1 Bode diagram for Problem 2.3(c).

Alternatively, one can find the frequency that maximizes the gain by the

following reasoning: Since it is a second order system, it can be written as

Gc(s) =
K

s2 + 2ζωs +ω2

In our case ζ = 2/
√

5 ( 0.9. This means that the system is well damped and

that it does not have a resonance peak in the gain curve. Since the gain is

decreasing with frequency, the maximum gain can thus be found at ω = 0.

pGc(i · 0)p = 1

5

2.4 a.

S(s) = 1

1+ C P
= s3 + 2s2 + s

s3 + 2s2 + 2.4s+ 1.4
=

= (s+ 1)(s2 + s)
(s+ 1)(s2 + s+ 1.4) =

s2 + s

s2 + s+ 1.4

Remark: Notice that we have a 3rd order system (with a 1st order controller

and 2nd order plant), but the transfer functions S(s) is only of 2nd order!

Looking at the block-diagram of the system one can clearly see the pole–zero

cancellation of the term (s+1) for P ·C. These kind of pole-zero cancellations

imply loss of either observability or loss of controllability, which will be studied

later in the course.
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Solutions to Exercise 2

T(s) = C P

1+ C P
= 1.4(s+ 1)

s3 + 2s2 + 2.4s+ 1.4
= 1.4

s2 + s+ 1.4

Remark: Also for T there has been a pole-zero cancellation of (s + 1), but a

corresponding cancellation does not appear in for instance Gd−>z = P
1+PC

.

The transfer function from n to z is T(s) (the minus sign can be ignored since

we could just as well say that the unknown noise is given by −n). This means

that the reference and the measurement noise have the same effect on the

output.

b. We know that S(s) is the transfer function from load disturbance to output.

Since the control system should remove the effects of load disturbances, which

often are of low frequency character, it would seem reasonable if the curve

representing S(s) decreases as we move to the left. This corresponds to the

upper curve.

We could also look at the function S(s) that we just determined. We see that

lim
s→0

S(s) = 0

Comparing with the upper curve, which has a gain that goes to zero for low

frequencies, we conclude that this represents the sensitivity function.

c. In order to have good tracking of the reference value, we want the gain

from reference to output to be close to one. Looking at the gain curve of the

complimentary transfer function T we see that for ω < 1, we have T ( 1,

resulting in good tracking of the reference value.

Additional comments: At the same time, we want to be insensitive to

process noise and measurement noise, i.e. we want the gain to be as small as

possible for these two signals.

The transfer function from process noise to output is S, while T is the transfer

function of both reference values and measurement noise to the output. S and

T can not be small at the same frequencies, due to the fact that

S(s) + T(s) = 1

1+ C(s)P(s) +
C(s)P(s)

1+ C(s)P(s) = 1

Thus, we need to think about the frequency character of these signals, and

compare with the shapes of the transfer functions: Process noise and reference

signals are often of low frequency, so we want to have S ( 0 and T ( 1 at low

frequencies. Measurement noise is most often of high frequency, so we want

to have T ( 0 at high frequencies.

d. At ω > 1 T is small, resulting in good attenuation of measurement noise.

(Do you see how the “speed” of control relates to the impact of measurement

noise?)

2.5 a. The sensitivity function is given by S = 1
1+PC

, so S is small at frequencies

where PC is large. The stationary gain of P is finite. C2 and C3 both have

integral action and infinite stationary gain. Thus, for these controllers, S will
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Solutions to Exercise 2

go to zero as ω → 0. C1, being a pure P-controller, has a finite stationary

gain. S will then also have a finite stationary gain.

C2 and C3 are PI-controllers, but C3 has a delay which will introduce extra

phase loss. This decreases the phase margin and therefore introduces a higher

sensitivity peak. Thus, we have: C1 → A, C2 → C, and C3 → B.

b. Since controller C1 does not have integral action, we will get a stationary

error in the response to a constant load disturbance, d. The response using

the delayed controller C3 will be less damped than the response using the

PI-controller because of the smaller phase margin, C2. This gives: C1 → I I,

C2 → I, and C3 → I I I.

2.6 a.

y = αh2, f = β(h1 − h2)

ḣ1 =
1

A1

(u1 − f ), ḣ2 =
1

A2

(u2 + f − y)

ḣ =
(

− 1
A1

β 1
A1

β

1
A2

β − 1
A2
(β +α)

)

h +
(

1
A1

0

0 1
A2

)

u

y = ( 0 α ) h

b.

G(s) = 1

s2 + (2β +α)s+αβ
(αβ α(s+ β) )

c. Since the system is stable, the L2 gain can be computed in Matlab as:

>> s = tf(’s’);

>> G = 1/(s^2+3*s+1)*[1 s+1];

>> P = norm(G, inf)

The L2 gain is
√

2.

d. The problem is that if v is a signal corresponding to a mass flow, then the

2-norm of that signal does not correspond to total accumulated mass flow:

ppvpp2 =
√

∫∞

−∞
pv(t)p2dt ,= total mass flow =

∫∞

−∞
v(t)dt.

Compare the following signals:

v1(t) =
{

1 if 0 ≤ t ≤ 1

0 if t > 1

v2(t) =
{

2 if 0 ≤ t ≤ 0.5

0 if t > 0.5,

both corresponded to a total flow of 1 unit of mass, however their L2-norms

are different, 1 respectively
√

2.

In many contexts, however not quite in this one, the L2-norm has a natural

interpretation as the square root of signal energy.
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Solutions to Exercise 3. Disturbance Models and

Robustness

3.1 Let

G(s) = 1

s+ 1
.

a. The closed loop is guaranteed to be stable accoring to the small gain theorem

if ppGpp · pp∆pp < 1. We see that ppGpp = 1 (use norm(G,inf) or look at the Bode

Plot), so the system is guaranteed to be stable if pp∆pp < 1.

b. The loop gain is given by

L(s) = G(s)K = K

s+ 1
,

and the sensitivity function by

S = 1

1+ L
= 1

1+ K
s+1

= s+ 1

s+ 1+ K
.

We see that there is one closed-loop pole in s = −(1 + K), so the system is

stable exactly when K > −1. We can compare this to the result in a, which

guarantees that the system is stable when pK p < 1.

The different results arise from the fact that the small gain theorem is con-

servative in nature, i.e. it gives a sufficient condition on stability, but that

condition may not be necessary. The main reason of such a conservatism, is

that there is no a priori assumptions on ∆. ∆ in a can be a transfer func-

tion of an arbitary order, not just an unknown scalar as in b. Looking at

the closed-loop poles, on the other hand, shows exactly when the system is

stable.

3.2 a. Block diagrams of the original and the rewritten closed-loop system are shown

in Figure 3.1. We have

C(s) = 2s+ 2

s
P(s) = 1

(s+ 1)2 W(s) = s

s+ 2

Gvn(s) = −
C(s)W(s)

1+ P(s)C(s) = −
2s4 + 6s3 + 6s2 + 2s

s4 + 4s3 + 7s2 + 8s+ 4
= − 2s3 + 4s2 + 2s

s3 + 3s2 + 4s+ 4

Matlab commands:

>> s = tf(’s’);

>> C = 2*(s+1)/s

>> P = 1/(s+1)^2

>> W = s/(s+2);

>> Gvn = -feedback(C,P)*W;

b. The L2-gain of Gvn is equal to 2.63. This corresponds to the peak magnitude

in the Bode diagram of Figure 3.2.
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C(s) P(s)

v
∆(s)

n

+

W(s)

−1

v
∆(s)

n

Gvn(s)

Figure 3.1 Systems for Problem 3.2.

c. The small gain theorem shows stability for all perturbations, ∆, satisfying

pp∆pp∞ · ppGvnpp∞ < 1

The closed-loop system is therefore stable for all perturbations ∆ with

q∆q∞ < 1/qGvnq∞ = 0.38

Matlab commands:

10
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0
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1
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0
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a
g
n

it
u

d
e

Figure 3.2 Bode magnitude diagram for Gvn(s).
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>> norm(Gvn, inf)

>> 1/ans

d. Process models are often better (that is, they match the real process more

closely) in the low frequency range. As frequency increases there is usually

excitation of higher-order dynamics and non-linearities in the real process,

which is not covered by the model.

Since we know that there is more uncertainty for high frequencies, this can

be used to get some structure on the uncertainty block. This structure is given

by the extra factor (such factors are usually called weighting functions), which

effectively makes the uncertainty smaller for low frequencies (approximately

when ω < 2). Without this factor, the analysis would assume equal uncer-

tainty for all frequencies, yielding a lower bound on the L2-gain of ∆. In other

words, the system would appear less robust.

3.3 a. Matlab commands:

>> s = tf(’s’);

>> P = 1/(s+2);

>> C = (0.81*s+3.6)/(0.225*s)

>> G = feedback(C*P,1);

>> pole(G)

ans =

-2.8000 + 2.8566i

-2.8000 - 2.8566i

b. The transfer functions are

Z = 1

1+ C P
V + P

1+ C P
D − C P

1+ C P
N + C P

1+ C P
R

Z = SV + S P D+ T(R − N)

Z(s) = ( S(s) S(s)P(s) T(s) −T(s) )








V(s)
D(s)
R(s)
N(s)








Matlab commands:

>> T = feedback(C*P,1);

>> S = 1-T;

>> bode(T)

>> hold on

>> bode(S)

>> S

Transfer function:

s^2 + 2 s

----------------

s^2 + 5.6 s + 16

>> T
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Transfer function:

3.6 s + 16

----------------

s^2 + 5.6 s + 16
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Figure 3.3 Bode diagrams of S and T in Problem 3.3.

c. In the bode plot of the sensitivity function, we see that qS(i0.5)q = −23.8 dB =
10(−23.8/20) = 0.0646

Matlab commands:

>> abs(freqresp(S,0.5))

ans =

0.0644

d. We convert ω = 2π50 Hz = 314.16 rad/s. In the bode plot of the com-

plementary sensitivity function, we see that qT(i314.16)q = −38.8 dB =
10(−38.8/20) = 0.0115

We have very good attenuation of both load disturbances and measurement

noise.

3.4 a. The transfer function from n to v as seen in Figure 3.4 can be written as
H = −PCW

1+PC according to the following Matlab commands:

>> s = tf(’s’);

>> W = s/(s+1);

>> P = 1/(s+2);

>> C = (0.81*s+3.6)/(0.225*s);

>> H = -feedback(P*C,1)*W;
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H(s)

∆(s)
nv

Figure 3.4 Rewritten closed-loop system for Problem 3.4(a).
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Figure 3.5 Nyquist plot of −H(s) in Problem 3.4(b).

>> norm(H,inf)

ans =

1.0072

>> lower_bound = 1/ans

ans =

0.9928

b. We know that ∆(s) = δ , a real number. Looking at Figure 3.4 we see that we

can apply the Nyquist Criterion to analyze the closed-loop stability.

From the Nyquist Plot of −H(s) in Figure 3.5, we see that the closed loop

is stable for all δ ≥ 0. For negative δ :s, the closed loop will become unstable

once the bubble formed by the Nyquist Curve has grown so large that −1 is

no longer on its outside. We find this value to be −δ = 1.0119 from the gain

margin of −H. Thus, the system is stable when δ > −1.0119.

The small gain theorem is easy to use, but it can be conservative, since there

is no prior assumptions on structure of uncertainty. With more information

about the uncertainty, the bounds can be less conservative and we can allow

all positive values of δ as well.

Matlab code:

>> nyquist(-H)
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>> allmargin(H)

ans =

GainMargin: 1.0119

GMFrequency: 2.3256

PhaseMargin: [-4.4628 -18.9141]

PMFrequency: [2.5211 3.1922]

DelayMargin: [2.4614 1.8649]

DMFrequency: [2.5211 3.1922]

Stable: 1

c. In the referenced figure the uncertainty is added to the process. This is called

an additive uncertainty, ie. P + ∆. Here, the uncertainty is multiplied to the

output signal, giving a multiplicative uncertainty, ie. P(1 + ∆). In this type

of model, the uncertainty is proportional to the process gain.

3.5 Φu(ω) is an even, scalar, non-negative function. Thus we can divide it into

Φu(ω) = G(iω)G(−iω)Φe(ω)

where G(s) has its poles and zeroes in the left half-plane and Φe = 1 (white

noise).

a.

Φu(ω) =
a2

ω2 + a2
Φe(ω) =

a

iω + pap ·
a

−iω + pap
So the linear filter is

G(s) = a

s+ pap

b. In the same way, we get

Φu(ω) =
a2b2

(ω2 + a2)(ω2 + b2)Φe(ω)

= ab

(iω + pap)(iω + pbp) ·
ab

(−iω + pap)(−iω + pbp)

[ G(s) = ab

(s+ pap)(s+ pbp)

3.6 a. To make a state-space description, we let x1 = z, x2 = ż =[

ẋ1 = x2,

ẋ2 =
1

m
(u− k1 x2 − v).

In matrix form:

ẋ =
(

0 1

0 − k1

m

)

x+
(

0
1
m

)

u+
(

0

− 1
m

)

v,

z = ( 1 0 ) x.
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b. We want to find a filter H such that

Φv(ω) = pH(iω)p2Φe(ω)

Thus H(s) =
√

k0

s+pap , which is equivalent to v̇+ papv =
√

k0 e.

Adding a new state x3 = v to the state-space description, gives

ẋ3 = −papx3 +
√

k0e

and

ẋ =






0 1 0

0 − k1

m
− 1

m

0 0 −pap




 x+






0
1
m

0




 u+






0

0√
k0




 e

z = ( 1 0 0 ) x, Φe(ω) = 1

3.7 a. With {A, B, C, N} according to the solution of problem 3.6, we have

ẋ = Ax+ Bu + Ne

y = Cx+ n

where n has spectral density Φn " 0.1.

b. A noise signal with the specified spectral density is given by the output of

a linear system with white noise input that has spectral density Φwn
= 0.1.

The transfer function of the system is

Gn(s) =
s

s+ pbp =
s+ pbp − pbp

s+ pbp = 1− pbp
s+ pbp

In state-space form this can be expressed as

ẋ4 = −pbpx4 + pbpwn

n = −x4 +wn

Combining the noise model with our original system gives the expanded

state-space description:

ẋ =
(

A 0

0 −pbp

)

x+
(

B

0

)

u+
(

N 0

0 pbp

)(

e

wn

)

y =
(

C −1
)

x+ wn, Φωn
= 0.1

Note that the disturbance can be described using a transfer function and

white noise of any spectral density. For instance, it is often convenient to

assume white noise with a spectral density of 1. In this case, the transfer

function of the system would be

Gn(s) =
√

0.1s

s+ pbp

The expanded state space description would then need to be adjusted to

account for this.
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Solutions to Exercise 3

c. Now, the transfer function of the noise model is Gn(s) = 1
s+pbp . In state-space

form, this is

ẋ4 + pbpx4 = wn.

The expanded system becomes

ẋ =
(

A 0

0 −pbp

)

x+
(

B

0

)

u+
(

N 0

0 1

)(

e

wn

)

y = (C 1 ) x, Φωn
= 0.1

As in subproblem b, the disturbance can be described using a transfer function

and white noise of any spectral density. Assuming white noise with a spectral

density of 1, the transfer function of the system would be

Gn(s) =
√

0.1

s+ pbp

3.8 a. The spectrum of the wind is of low-pass character with cut-off frequency α.

When α is increased, v(t) becomes more similar to white noise, i.e. there is

more high-frequency content in the signal. Thus, higher α means more wind

gusts.

Alternatively, one could look at the covariance function:

Rv(τ ) =
1

2π

∫∞

−∞
Φv(ω)eiωτ dω = e−αpτ p, α > 0.

The covariance function has a sharper peak when α is large. That is, the

correlation between v(t) and v(t+τ ) is small, meaning that the wind changes

more often.

b. Using spectral factorization, the influence of wind can be described as white

noise e(t) with intensity 1 filtered through a linear system with transfer

function

H(s) =
√

2/α
1+ s/α

Thus Y (s) = G(s) H(s)E(s), where

G(s) H(s) = K
√

2α

(α + s)(s2 + s+ 1) =
K
√

2α

s3 + (1+α)s2 + (1+α)s+α
.

The variance of the output is

Var(y) = 1

2π

∫∞

−∞
pG(iω)H(iω)p2 dω

= 1

2π

∫∞

−∞

∣
∣
∣
∣
∣

K
√

2α

(iω)3 + (1+α)(iω)2 + (1+α)iω +α

∣
∣
∣
∣
∣

2

dω

= K2(1+α)
1+α +α2

.
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Solutions to Exercise 3

Apparently, the variance increases with wind strength, which is no surprise.

However, the variance decreases with the amount of wind gusts. The reason

is that a low amount of gusts means that there are longer periods of almost

constant wind force, where the swing is displaced far from the origin. A lot of

gusts, on the other hand, results in the wind force changing sign frequently,

more or less cancelling its own effect a lot of the time.

3.9 a. (i)

1

s(s+ 1)
+

1

s

u

v

w

y

(ii)

1

s(s+ 1)
+

1

s

u

v

w

y

v(t) is a unit disturbance

b. (i)

ẋ =

A
︷ ︸︸ ︷




0 1 0

0 −1 1

0 0 0




 x+

B
︷ ︸︸ ︷




0

1

0




 u+






0

0

1




 v

y = ( 1 0 0 )
︸ ︷︷ ︸

C

x.

(ii)

ẋ =

A
︷ ︸︸ ︷




0 1 0

0 −1 0

0 0 0




 x+

B
︷ ︸︸ ︷




0

1

0




 u+






0

0

1




 v

y = ( 1 0 1 )
︸ ︷︷ ︸

C

x.
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c. (i) w(t) could be an offset current on the input to the motor, and/or a step

disturbance in the load.

(ii) In this case w(t) is a measurement disturbance, i.e. an additive error

(constant) in the angle measurement. It could also be interpreted as a

load disturbance on the process output. A controller could remove the

effect from a load disturbance on the process output, but not a constant

measurement disturbance, so the interpretation makes a difference.
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Solutions to Exercise 4. Loop Shaping, Preparations for

Lab 1

4.1 This is a preparatory exercise for the laboratory session. This is not a complete

solution, just some helpful tips.

a. Since we cannot change the phase of the system using a P-controller, higher

gain will lead to lower phase margin (as the phase approaches -180 for high

frequencies).

Higher gain will also decrease stationary errors, but increase the maximum
peak in the sensitivity function (making the system very sensitive to mea-
surement noise).

>> figure(1)

>> step(P/(1+0.1*P),P/(1+1*P),P/(1+5*P),P/(1+10*P));

>> title(’Step responses’)

>> figure(2)

>> bode(P/(1+0.1*P),P/(1+1*P),P/(1+5*P),P/(1+10*P));

>> title(’Transfer functions from load disturbance’);

>> figure(3)

>> bode(1/(1+0.1*P),1/(1+1*P),1/(1+5*P),1/(1+10*P));

>> title(’Sensitivity functions’);

b. It is not possible to achieve good behavior with a PI controller, but try to get
it as good as possible:

>> figure(1)

>> K= ... ; Ti = ... ;

>> C = tf(K*[1 1/Ti],[1 0]);

>> step(P/(1+C*P);

4.2 This is a preparatory exercise for the laboratory session. This is not a complete

solution, just some helpful tips.

a. From the basic course: We calculate the gain qC(iω)q = 1/
√

ω2/a2 + 1 and

use log scale. Then

log pC(iω)p = −0.5 log(ω2/a2 + 1) (
{

0 ω << a

log(a) − log(ω) ω >> a

and the two lines meet where ω = a (the breakpoint). Also, the phase is at

−45○ at ω = a, starts at 0○ and ends at −90○.

We can add a pole to the controller if we want to decrease gain for higher

frequencies, e.g., to limit the cut-off frequency ω c. It is often the case that

we want to increase the gain at low frequencies, but keep it low at high

frequencies. We can then use a controller of the type C(s) = K/(s/a + 1)
with a pole to limit high frequency gain and a static gain larger than one to

increase the low frequency gain.

>> C01 = tf([1],[1/0.1 1]);

>> C1 = tf([1],[1/1 1]);

>> C5 = tf([1],[1/5 1]);

>> bode(C01, C1, C5);
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Solutions to Exercise 4

b. The same as in (a), except that a zero breaks the gain up at b.

log pC(iω)p = 0.5 log(ω2/b2 + 1) (
{

0 ω << b

log(ω) − log(b) ω >> b

We can add a zero to the controller to increase gain at high frequencies in

order to increase the cut-off frequency ω c. Also, since the phase of the zero

goes to +90○, we increase the phase margin by adding a zero.

4.3 This is a preparatory exercise for the laboratory session. This is not a complete

solution, just some helpful tips.

The following Matlab code shows some relevant plots for a design:

>> s = tf(’s’);

>> C = ...; % Make up your own design

>> figure(1)

>> margin(C*P) % Plot open-loop frequency response

>> figure(2)

>> % Plot step responses from load disturbance and reference signal to output signal y.

>> subplot(2,1,1)

>> step(P/(1+P*C));

>> title(’Load step response’);

>>

>> subplot(2,1,2)

>> step(P*C/(1+P*C))

>> title(’Reference step response’);

4.4 This is a preparatory exercise for the laboratory session. This is not a complete

solution, just some helpful tips.

a. The ideal frequency response is Gyr " 1. Then we would always have y = r.

However, achieving something close to this would require very aggressive

control, so that is not a good idea. (The controller would need to invert the

process dynamics, resulting in second-order derivative action on the control

error).

b. We want to shape F(s) so that the constraints on the control signal are

respected, for a step change in the reference. This may be achieved by reducing

the bandwidth.

4.5 Plot the Bode diagram for Go(s) in Matlab or use the command

>> [Gm,Pm,Wcg,Wcp] = margin(G_o)

to calculate the cut-off frequency ω c = 0.73 and the phase margin φm = 20.7○.
To reach the aim of a φm,desired = 50○, the controller has to increase the phase

at the cut-off frequency with approx 30○. We use the lead compensation given

by

Gk(s) = K N
s+ b

s+ bN
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Figure 4.1 To the left: Plot of φδ against b. To the right: Step response from the original

system and the compensated system in Problem 4.5.

with the phase

φ = arctan
( s

b

)

− arctan
( s

bN

)

The maximum of the phase compensation for the compensator is at the fre-

quency b
√

N, which preferably should coincide with ω c, hence N = (ω c/b)2.

Plot the phase addition of the compensator given by

φδ = arctan
(ω c

b

)

− arctan

(

b

ω c

)

and determine that the factor b ( 0.4 for φδ = 30○ (see Figure 4.1). To
keep the cut-off frequency invariant the gain of the compensator has to be

calculated from pGk(iω c)Go(iω c)p = K
√

N · 1 gives K = 1√
N
= 0.55. Plot the

step response by the commands:

>> G_l=tf(K*N*[1 b],[1 b*N])

>> step(G_o*G_l/(1+(G_o*G_l))

The stationary error:

E(s) = 1

1+GkGo
U(s) = s(s+ 0.5)(s+ 3)(s+ bN)

s(s+ 0.5)(s+ 3)(s+ bN) + 2K N(s+ b)U(s)

The Laplace transform of a ramp function is U(s) = 1/s2 and the error is

lim
s→0

sE(s) = 1.5

2K
= 1.37

which fulfills the specification.

4.6 a. The transfer function from d to y is given by

Gyd(s) =
P

1+ PC

For frequencies ω ≤ 0.5 (approximately), it can be seen in the Bode diagram

that both pP(iω)p ≫ 1 and pP(iω)C(iω)p ≫ 1. Therefore Gyd(s) ( 1
C

, and

pC(iω)p becomes larger than 1 for frequencies ω ≤ 0.02.
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The magnitude of Gyd(s) is thus smaller than 1 in a frequency range of

approximately [0, 0.02], thus ωb = 0.02 rad/s.

This can also be seen as the frequency point where pPCp becomes larger than

pPp in the bode diagram.

b. To increase ωb, we would like to increase the gain of C(iω) for frequencies

ω > 0.02. This is done by moving the zero in C(s) (the break-point in the

Bode diagram) from 0.02 to some higher frequency.

Choose, e.g., a= 0.1. Motivation:

• As Gyd(s) ( 1
C , and pC(iω)p now becomes larger than 1 for frequencies

ω ≤ 0.1, ωb has been increased to about 0.1.

• The cut-off frequency for a = 0.02 is ω c ( 0.8. As this frequency is

higher than the new break-point 0.1, C(iω c) ( 1 still holds [ the cut-off

frequency stays the same.
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Solutions to Exercise 5. Multivariable Zeros, Singular

Values and Controllability/Observability

5.1 a. In Matlab, we may derive the controllability- and observability matrices using

>> Wc = ctrb(A,B)

Wc =

1 -1 1

1 -2 4

0 0 0

>> rank(Wc)

ans =

2

>> Wo = obsv(A,C)

Wo =

1 0 1

-1 0 -3

1 0 9

>> rank(Wo)

ans =

2

Since the system is in diagonal form we can see, using Theorem 3.1 in the

course book (Glad&Ljung), that the uncontrollable mode corresponds to the

third state (as that row in the B matrix is 0). By Theorem 3.2 in the course

book, the unobservable mode is determined to be the second state in a similar

fashion (the column of C equal to 0).

The system is illustrated in the block diagram in Figure 5.1. We can see that

the state x2 will not influence y, and is therefore not observable. We can also

see that the control signal u will not affect the state x3, and therefore this

state is not controllable.

b. The transfer function is simply

G(s) = C(sI − A)−1B = 1

s+ 1

and the system can thus be represented as a minimal realization in state-

space form of order 1. Note that this corresponds to the first subsystem in

Figure 5.1 which is both observable and controllable.
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u

y

x1

x2

x3

1
s+1

1
s+2

1
s+3

+

0

Figure 5.1

If we are only interested in the relationship between u and y, we can use the

resulting first order transfer function G(s). However, the original third order

state-space model contains additional information, as seen in Figure 5.1. The

second and third subsystems in this model may represent physical entities

of the plant that must be taken into account. If we need to influence x3 or

monitor x2, additional sensors or actuators are needed.

5.2 a. First of all, define the system in Matlab

>> A = [-0.21 0.2;0.2 -0.21];

>> B = 0.01*eye(2);

>> C = eye(2);

>> D = 0;

>> sys = ss(A,B,C,D);

The controllability Gramian is calculated using

>> W = gram(sys,’c’)

W =

0.0026 0.0024

0.0024 0.0026

b. Recall the formula from the lecture notes:

∫∞

0

u2(s)ds ≥ xT(∞)W−1 x(∞)

Therefore to identify the hardest to control state direction, we calculate the

eigenvalues and the eigenvectors of W−1 :

[T L] = eig(inv(W))

T =

-0.7071 -0.7071

-0.7071 0.7071
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Solutions to Exercise 5

L =

1.0e+03 *

0.2000 0

0 8.2000

Apparently one eigenvalue of the inverse of the Gramian is almost 40 times

larger than the other. Hence one state direction is poorly controllable.

Inspection of the corresponding eigenvectors, i.e. the columns of T, shows that

the small eigenvalue correponds to a state direction where both temperatures

move in the same way, while the poorly controllable state direction correponds

to temperatures moving in opposite directions.

5.3 a. Continuing the code we get

>> syms c1 c2 c3 c4 c5

>> C = [c1 c2 c3 c4 c5];

>> Wo = [C;C*A;C*A^2;C*A^3;C*A^4];

>> det(Wo)

ans =

0

>> rank(Wo)

ans =

4

Since the system does not have full rank (5) we see that no matter how we

choose C (when it is a vector), the system can never be made observable. This

means that we need information from more than just one signal to make the

system observable.

b. Determine the eigenvectors of the system

>> [V,D]=eig(A)

V =

0 0.3333 0.4286 -0.0261 0.0206

0 0.6667 -0.8571 0.7973 -0.3916

1.0000 0.6667 0.2857 -0.0399 0.0196

0 0 0 0.6017 0

0 0 0 0 0.9197

...
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Rewrite the system in diagonal form using the variable change x(t) = V z(t)

ẋ(t) = V ż(t) = AV z(t) + Bu(t) [
ż(t) = V−1 AV z(t) + V−1Bu(t) = Λz(t) + V−1Bu(t)
y(t) = CV z(t)

where Λ is a diagonal matrix with the eigenvalues in the diagonal. Now that

we have the system on the wanted form, we can determine if there are any

columns in CV that are zero

>> C*V

ans =

0 0.3333 0.4286 -0.0261 0.0206

0 0.6667 -0.8571 0.7973 -0.3916

The first state in z therefore corresponds to the unobservable mode. In the

original variables this is the third state:

>> V*[1;0;0;0;0]

ans =

0

0

1

0

0

So, the third state is the unobservable mode.

5.4 System A depicts the observable system. Obviously the problem is in the pole

p0 = −3. We control directly the plant P1, and we observe the output of

plant P2. It means that we observe the effect of the pole p0 = −3, but due to

pole-zero cancellation, we cannot control it.

Similarly for system B, we control the plant P2, and the pole p0 = −3 is

controllable, but the effect of that pole is cancelled by the zero in P1 and we

do not observe it. Hence the whole system is not observable.

5.5 a. The largest subdeterminant of the transfer function matrix is

(s+ 1)
(s+ 2)2 +

1

(s+ 2)2 =
1

(s+ 2)

Furthermore, the matrix elements in themselves are subdeterminants. The

pole polynomial, i.e. the least common denominator of all subdeterminants,

is then

p(s) = (s+ 2)
This means that the system has a pole in s = −2. The system can thus be

realized in state-space form of order 1.
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Figure 5.2 Singular value plot in Problem 5.5.

The largest possible subdeterminant was

1

(s+ 2)

The zero polynomial is thus just a constant and the system does therefore not

have any zeros.

Note, that we basically calculated the determinant of the transfer matrix

det(G(s)) and took its denominator as the pole polynomial and numerator as

the zero polynomial.

b.

G(s) =
( 1

s+2
− 1

s+2

1
s+2

s+1
s+2

)

=
( 1

s+2
− 1

s+2

1
s+2

1− 1
s+2

)

= 1

s+ 2

(

1 −1

1 −1

)

+
(

0 0

0 1

)

= 1

s+ 2

(

1

1

)

( 1 −1 ) +
(

0 0

0 1

)

A state-space realization can now be written as

dx

dt
= −2x+ ( 1 −1 )u

y =
(

1

1

)

x+
(

0 0

0 1

)

u

c. The singular value plot (see Figure 5.2) is drawn using the command sigma.

The L2 gain ppGpp∞ is the largest singular value of G(iω) across all frequencies

ω, from the figure we can see that ppGpp∞ = 1 in this case. We also see that

the largest gain of this system is achieved at high frequencies.
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5.6 a. To determine the frequency response at a certain frequency ω, it’s handy to

use the Matlab command freqresp. To calculate the singular values together

with the U and V matrices, use the function svd. The Matlab code can look

like this:

>> s = tf(’s’);

>> G = [1 1/s];

>> [U,S,V] = svd(freqresp(G,1))

U =

1

S =

1.4142 0

V =

0.7071 0 + 0.7071i

0 + 0.7071i 0.7071

The maximum gain, corresponding to the highest singular value, is ob-

tained as the first element in S and is σ = 1.4142. The first column of

V , v1 = (0.7071 0.7071i)T , corresponds to the input direction that gives

the maximum gain σ . Since the system has two inputs and only one output,

there will always be an input direction that gives zero output (where the

inputs cancel each other). The second column of V gives us this direction,

v2 = (0.7071i 07071)T .

b. If the input signal is a sinusoid with frequency ω = 1 rad/s, the complex

numbers will correspond to a phase shift of this sinusoid. The input direction

giving the highest gain is v1 = [0.7071 0.7071i]T , meaning that the second

input has 90○ of phase lead before the first.

The first input comes through the system unchanged; the second goes through

an integrator, causing a phase lag of 90○. Thus the input direction v1 =
[0.7071 0.7071i]T will cause the two sinusoids that sum up at the output to

be in phase; resulting in maximal gain.

If we instead use the lowest gain input direction v2 = [0.7071i 0.7071]T , the

second input will have a phase lag of 90○, causing a 180○ phase lag at the

output. The two signals will cancel at the output, resulting in minimal gain.

5.7 a. >> s = tf(’s’);

>> G = 1/(75*s+1)*[87.8 -86.4;108.2 -109.6];

>> sigma(G)

>> grid

See Figure 5.3 for the Matlab plot.

b. Calculate the frequency responses at the given frequencies
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Figure 5.3 Singular value plot for Problem 5.7

>> Gfr1 = freqresp(G,0)

Gfr1 =

87.8000 -86.4000

108.2000 -109.6000

>> Gfr2 = freqresp(G,0.1)

Gfr2 =

1.5336-11.5022i -1.5092+11.3188i

1.8900-14.1747i -1.9144+14.3581i

The gain of a transfer matrix at a particular frequency, ω, is computed as

sup
d ,=0

qG(iω)dq2

qdq2

. If we choose a particular direction d0 then the supremum

disappears and the gain is given by
qG(iω)d0q2

qd0q2

.
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Thus the gains are given by

qG(0)d1q2

qd1q2

= q [−5.1 −8.6 ]T q2

q [ 0.6713 0.7412 ]T q2

=
√

(−5.1)2 + (−8.6)2
√

(0.6713)2 + (0.7412)2
= 10.0

1

qG(0)d2q2

qd2q2

= 139.3

qG(0.1i)d1q2

qd1q2

= 1.3

qG(0.1i)d2q2

qd2q2

= 18.4

They can also be calculated in Matlab using

>> d1 = [0.6713;0.7412];

>> d2 = [1;0];

>> norm(Gfr1*d1),norm(Gfr1*d2),norm(Gfr2*d1),norm(Gfr2*d2)

ans =

9.9990

ans =

139.3416

ans =

1.3215

ans =

18.4159

c. Using Matlab:

>> [U,S,V] = svd(Gfr1)

U =

-0.6246 -0.7809

-0.7809 0.6246

S =

197.2087 0

0 1.3914

V =

-0.7066 -0.7077

0.7077 -0.7066
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The maximum gain is σ = 197.2 and the minimum gain is σ = 1.39. The input

direction associated with the maximum gain is v1 = [−0.7066 0.7077]T .

The input direction giving the least gain is v2 = [−0.7077 − 0.7066]T .

These directions are constant for all frequencies. The reason is that the

denominators of all matrix elements are the same, which gives

G(iω) = 1

75iω + 1
G(0).

Let G(0) = UΣV∗. We then have G(iω) = U

(

1

75iω + 1
Σ

)

V∗, and we can

see that ω will only change the singular value matrix Σ, not the direction

matrices U and V .
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Solutions to Exercise 6. Fundamental Limitations

6.1 a. The transfer function of the process P(s) is given by

P(s) = s

s2 + 2s+ 1

and the zero is located in the origin.

b. The sensitivity function is given by S(s) = 1

1+ P(s)C(s) and it will be one at

low frequencies since P(0) = 0. Note that you can not cancel the process zero

in s = 0 with your controller since you then would not have an asymptotically

stable system.

c. The error e(t) is given by r(t) −θ(t) and the static error is then given by the

final value theorem, which can be used if all poles of sE(s) have a strictly

negative real-part.

lim
t→∞

e(t) = lim
s→0

sE(s)

Here the transfer function from r to e is given by:

Gre(s) =
1

1+ P(s)C(s)

The following result is obtained if r(t) is assumed to be a step, R(s) = a/s.

lim
s→0

sE(s) = lim
s→0

sGre(s)R(s) = a

since P(0) = 0 (and thereby Gre(0) = 1). This means that the ball will not

follow a reference trajectory that changes step-wise; there will be a static

error equal to a. Hence, no matter the reference value, the ball will end up

in the bottom of the cylinder.

An alternative explanation is that the sensitivity function S is 1 at s = 0,

therefore

T(0) = P(0)C(0)
1+ P(0)C(0) = 1− S(0) = 0

and then y(t) does not follow r(t).

d. The transfer function for the open loop with a PI controller is given by:

P(s)C(s) = s

s2 + 2s+ 1
K

s+ 1/Ti

s
= K

s+ 1/Ti

s2 + 2s+ 1

Here the process zero is canceled by the controller.

If we would have no stationary error the control signal from a PI controller

would be constant. But if we have a constant control signal ω that would imply

that ω̇ = 0 which would give θ = 0 and we would get a stationary error (if

r(t) ,= 0). This is contradictory and therefore we must have a stationary error.

And with a PI controller a stationary error would give a linearly increasing

control signal.
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Solutions to Exercise 6

6.2 The sensitivity function is given by:

S(s) = 1

1+ P(s)C(s)

From this it follows that

S(iω) = 1

1+ P(iω)C(iω)

a. In the case of a purely imaginary process pole in iωp we have

P(iωp) = ∞

and consequently

S(iωp) = 0

b. A measurement disturbance n with frequency ωp will have a vanishing effect

on y and e, since

S(iωp) = 0.

Note that this implies that n will have a big impact on z since z(t) = y(t)−n(t).

c. No stabilizing controller can change the fact that S(iωp) = 0. Cancellations

of poles on the imaginary axis should always be avoided.

d. In the case of a purely imaginary process zero in iω z we have

P(iω z) = 0

and consequently

S(iω z) = 1

e. The transfer function from n to z is given by −T(s), where T is the comple-

mentary sensitivity function. Since S(iω z) = 1 and S + T = 1 it must hold

that T(iω z) = 0, i.e. an output disturbance with frequency ω z will have no

effect on z.

6.3 a. The transfer function from n to z is given by

Gn→z(s) = −
P(s)C(s)

1+ P(s)C(s)

We want to determine C(s) such that Gn→z(s) = 5/(s + 5). This gives the

equation

− P(s)C(s)
1+ P(s)C(s) =

5

s+ 5
=[ C(s) = −

5
s+5

P(s) · (1+ 5
s+5
)
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Solutions to Exercise 6

Inserting P(s) = (3− s)/(s + 1)2, we obtain

C(s) = − 5 · (s+ 1)2
(3− s)(s + 10)

However, this is not a stabilizing controller. For example, the transfer function

from n to u, Gn→u = − C(s)
1+P(s)C(s) , will be unstable because of the cancellation

of the unstable zero in P(s).

b. The specification

pS(iω)p ≤ 2ω√
ω2 + 36

ω ∈ R+

is equivalent to

sup
ω

∣
∣
∣
∣
∣

√
ω2 + 36

2ω
S(iω)

∣
∣
∣
∣
∣
≤ 1

However, Wa(iω) = iω+a
2iω gives pWa(iw)p =

√
ω2+36
2ω , for a = 6 so the specifica-

tion can equivalently be written

sup
ω
pWa(iω)S(iω)p ≤ 1

There is a right half plane zero in z = 3. According to Theorem 7.4 in

[Glad&Ljung] this makes the specification impossible to satisfy unless pWa(z)p ≤
1. We see here that pWa(3)p = p3+6

2·3
p = 3

2
> 1, so the specification is impossible

to satisfy for a = 6.

c. The Bode plot of P(s) is given in Figure 6.1 and the sensitivity function

when C(s) = 1 is given in Figure 6.2 together with the specification. Since

the specification 2ω√
ω2+1

= 0 when ω = 0 the controller C(s) must contain

an integrator. To avoid instability we must also lift the phase curve through

adding a zero and decrease the gain in the open-loop, P(s)C(s). A controller

on the form

C(s) = K ·
s/b+ 1

s

with e.g. K = 0.17, b = 0.5 will do the job.

Hint: To plot the specification on top of the Bode plot of S the following
Matlab commands can be used:

>>[mag, fas, w] = bode(S);

>>loglog(w, 2.*w./sqrt(w.^2+1), ’r --’)

>>hold on

>>bode(S)

6.4 The first case is impossible, because there is a time-delay of 2 seconds in the

plant, so the control signal will affect the output with this delay. Thus, the

controller would need to be non-causal to achieve the specification.

The second specification in the figure says that the gain should be below 2

(actually the requirement is closer to ( 1.6).
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Figure 6.1 Bode plot of P(s) in Problem 6.3.
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Figure 6.2 Sensitivity function when C(s) = 1 and the specification (dashed) in Problem 6.3.

From theorem 7.3 in the lecture notes we see that if there is an unstable pole

p and an unstable zero z, we have the following fundamental limitation:

ppSpp∞ ≥
∣
∣
∣
∣

z+ p

z− p

∣
∣
∣
∣

We know that S + T = 1, so in this case, we have

ppTpp∞ = ppS − 1pp∞ ≥ ppSpp∞ − 1 ≥
∣
∣
∣
∣

20+ 10

20− 10

∣
∣
∣
∣− 1 = 2

where the first inequality follows from the reversed triangle inequality

pppxpp − ppyppp ≤ ppx − ypp
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Figure 6.3 Sensitivity function for the proposed controller and the specification (dashed) in

Problem 6.3.

It is also possible to get to the same conclusion without using the unstable

zero, since the existence of a fast unstable pole is enough the make the

specification impossible to achieve.

The third case is possible. If proportional control, C(s) = K is used the closed

loop transfer function becomes G(s) = K
s−3+K

. For stability it is required that

K > 3. The static gain is given by K
K−3

. Since it is a first order system there

will be no overshoot in the step response, which means that a P-controller

with K > 6 will fulfill the specification to stay in the interval [0, 2].

6.5 a. Assume sup
ω
pWS(iω)S(iω)p ≤ 1 and sup

ω
pWT(iω)T(iω)p ≤ 1 are satisfied.

We know that 1 = pS(s0) + T(s0)p ≤ pS(s0)p + pT(s0)p (triangle inequality).

If pWS(s0)p > 2 for some right half place s0, then pS(s0)p < 1/2, since

sup
ω
pWS(iω)S(iω)p = sup

Re(s)≥0

pWS(s)S(s)p ≤ 1(Maximum Modulus Theorem).

Analogously we get pT(s0)p < 1/2. Then

1 = pS(s0) + T(s0)p ≤ pS(s0)p + pT(s0)p < 1

and we arrive to contradiction. Hence either pWT(s)T(s)p > 1 or pWS(s)S(s)p >
1 and the corresponding specification must fail.

b. We have

WS(1) =
(

1+ 0.1

1

)n

=
(

1+ 10

10

)n

= WT(1)

and the value is larger than 2 for n ≥ 8. Hence, the statement in a shows

that the specifications are incompatible.
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C(s) P(s)+
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z
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d

Figure 6.4 System in Problem 6.6

6.6 a. The requirements on pS(iω)p = σ̄ (S(iω)) and pT(iω)p = σ̄ (T(iω)) may be

formulated as

pS(iω)p ≤ 1
10

, ω ≤ 0.1, pT(iω)p ≤ 1
10

, ω ≥ 2

pS(0)p ≤ 1
100

b. The specifications in a can be formulated with weighting functions WS and

WT as

pS(iω)p ≤ pW−1
S (iω)p, ∀ω

pT(iω)p ≤ pW−1
T (iω)p, ∀ω

If e.g. W−1
S and W−1

T are chosen according to

W−1
S (s) = a1

(

1+ s

b1

)

, W−1
T (s) = a2

s

(

1+ s

b2

)

we get

W−1
S (s) = 1

100
(1+ 100s), W−1

T (s) = 0.14

s

(

1+ s

2

)

6.7 The specification

pS(iω)p ≤ 2ω√
ω2 + c2

ω ∈ R+

is equal to

sup
ω

∣
∣
∣
∣
∣

√
ω2 + c2

2ω
S(iω)

∣
∣
∣
∣
∣
≤ 1

Since

WS(iω) =
iω + c

2iω

gives

pWS(iω)p =
√

ω2 + c2

2ω
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Solutions to Exercise 6

the specification can be written

sup
ω
pWS(iω)S(iω)p ≤ 1

According to Theorem 7.4 in [Glad&Ljung], this specification is impossible to

meet when the process has a RHP zero in s = z, unless pWS(z)p ≤ 1. Here we

have a zero in z = 6, so we must have

6+ c

12
≤ 1 \ c ≤ 6 = a.
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Solutions to Exercise 7. Controller Structures,

Preparations for Lab 2

Note: Exercises 7.1–7.3 serve as preparation for Laboratory Excercise 2.

7.1 a. The relative gain array for a complex-valued matrix is given by

RGA (G) = G. ∗ (G†)T

where † denotes the pseudo-inverse of G, and .∗ denotes element wise mul-

tiplication. For a process G(s) the RGA is usually computed for the DC-gain

(ω = 0) and the cut-off frequency (ω = ω c). By inspecting the elements in the

RGA-matrix, we can often decide what output should be controlled with what

input. We should choose a pairing that gives the diagonal elements close to 1

and avoid pairings that give negative diagonal elements.

b.

RGA(G(0)) = G(0) . ∗ G−T(0) =
(−5

7
12
7

12
7

−5
7

)

c. Since we should avoid negative diagonal elements and keep the diagonal

elements close to 1, we should choose the pairing y1 Q u2 and y2 Q u1.

7.2 We have

P(0) =





1 0 0

0 0.01 0.1

0.1 1 0





and

P(0)−1 =





1 0 0

−0.1 0 1

0.01 10 −0.1





RGA(P(0)) = P(0) .∗ (P(0)−1)T =





1 0 0

0 0 1

0 1 0





The RGA suggests that we should control output 1 with input 1, output 2

with input 3, and output 3 with input 2.

7.3 a. We see from the flow equation

Ai
d∆hi

dt
= −ai

√ �
2h0

i

∆hi + ∆qin (7.1)

that the outflow from tank i is

qout = ai

√ �
2h0

i

∆hi.
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Solutions to Exercise 7

The inflows into the tanks are found as the sum of the outflow from the tank

above and the flow from the pumps into the respective tanks. Writing down

equation (7.1) for each of the four tanks now gives the dynamics.

Substituting the time constants Ti into the dynamics, and arranging them

into matrix form then gives the state-space form.

b. The transfer matrix is given by

P(s) = C(sI − A)−1B =

=



kc 0 0 0

0 kc 0 0









s+ 1

T1

0 − A3

A1T3

0

0 s + 1

T2

0 − A4

A2T4

0 0 s+ 1

T3

0

0 0 0 s + 1

T4





−1 



γ1k1

A1

0

0
γ2k2

A2

0
(1−γ2)k2

A3

(1− γ1)k1

A4

0





=





γ1c1

1+ sT1

k2

k1

·
(1− γ2)c1

(1+ sT1)(1+ sT3)

k1

k2

·
(1− γ1)c2

(1+ sT2)(1+ sT4)
γ2c2

1+ sT2





c. The zeros are given by the equation

T3T4s2 + (T3 + T4)s+ 1− (1−γ1)(1−γ2)
γ1γ2

= 0

The two first coefficients are always positive, since T3, T4 > 0. The last coeffi-

cient is positive (and both zeros are thus stable) iff

(1−γ1)(1−γ2)
γ1γ2

< 1 \ γ1 +γ2 > 1

In the case γ1 = γ2 = 0.7 we get a minimum-phase system which should

be easier to control than the non-minimum-phase system we get in the case

γ1 = γ2 = 0.3.

d. We have

P(0) =





γ1c1

k2

k1

(1−γ2)c1

k1

k2

(1−γ1)c2 γ2c2





and

P(0)−1 = 1

c1c2(γ1 +γ2 − 1)





γ2c2 − k2

k1

(1−γ2)c1

− k1

k2

(1−γ1)c2 γ1c1




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RGA(P(0)) = P(0) .∗ (P(0)−1)T =

= 1

c1c2(γ1 +γ2 − 1)




γ1c1γ2c2 −(1−γ2)c1(1−γ1)c2

−(1−γ2)c1(1−γ1)c2 γ2c2γ1c1





=





γ1γ2

γ1 +γ2 − 1
1− γ1γ2

γ1 +γ2 − 1

1− γ1γ2

γ1 +γ2 − 1

γ1γ2

γ1 +γ2 − 1




=




λ 1− λ

1− λ λ





In the case γ1 = γ2 = 0.7 we get

RGA(P(0)) =



1.225 −0.225

−0.225 1.225





The RGA suggests we should control output 1 with input 1 and output 2 with

input 2.

In the case γ1 = γ2 = 0.3 we get

RGA(P(0)) =



−0.225 1.225

1.225 −0.225





The RGA suggests that in this case we should control output 1 with input 2

and output 2 with input 1.

7.4 a. We compute the RGA for stationarity, i.e. s = 0.

RGA(G(s)) =
( s−1

s+1
2

s+1

2
s+1

s−1
s+1

)

gives

RGA(G(0)) =
(−1 2

2 −1

)

.

Since you should avoid pairing that gives negative diagonal elements we

choose y1 Q u2 and y2 Q u1.

b. We have that

G(0) =
(

1 −2

1 −1

)

Using a decoupled controller structure with W1 = G−1(0) and W2 = I we get

a decoupled system in stationarity. (See Glad&Ljung ch. 8.3.) The controller

is

F(s) = W1 Fdiag(s)W2 =
(−F11(s) 2F22(s)
−F11(s) F22(s)

)

.
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Figure 7.1 Decentralized control

7.5 1. Decentralized control. First we calculate the RGA of the process,

RGA(G(0)) = G(0) . ∗ G−T(0) =
(

1.2308 −0.2308

−0.2308 1.2308

)

.

We see that we should choose y1 Q u1 and y2 Q u2. A resonable tun-

ing, either by pole placement or hand tuning, gives PI controllers with

parameters close to

F(s) =
(

2(1+ 1
0.5s) 0

0 2(1+ 1
0.5s
)

)

.

See figure 7.1 for step responses.

2. Decoupled control. The inverse of the static gain matrix is given by

G−1(0) =
(

4 3

1 4

)−1

Thus, for decoupling, we use W1 = G−1(0) and W2 = I. Hand-tuning of

the PI controllers gives

F(s) =
(

40(1+ 1
0.5s) 0

0 20(1+ 1
0.8s
)

)

.

See figure 7.2 for step responses.
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Figure 7.2 Decoupled control

close all

clear all

s = tf(’s’);

G = [4/(s+1) 3/(3*s+1); 1/(3*s+1) 2/(s+0.5)];

%Decentralized control

RGA = dcgain(G).*(inv(dcgain(G)))’

F = [2*(1+1/(0.5*s)) 0;0 2*(1+1/(0.5*s))];

figure(1)

step(feedback(G*F, eye(2)),5)

title(’Decentralized control’);grid

% Decoupled design

Go= dcgain(G)

F = [40*(1+1/(0.5*s)) 0;0 20*(1+1/(0.8*s))];

figure(2);

step(feedback(G*inv(Go)*F, eye(2)),5);

title(’Decoupled design’);grid
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Solutions to Exercise 8. Linear-Quadratic Optimal Control

8.1 a. The Riccati equation becomes (A = a, B = 1, M = 1, Q1 = 1, Q2 = R)

2Sa+ 1− S R−1 S = 0

This gives

S = aR+
√

(aR)2 + R

(S = aR−
√

(aR)2 + R is not a solution since S has to be positive definite.)

Thus the optimal control is given by

L = S

R
= a+

√

a2 + 1

R
.

The closed-loop system is hence, using u(t) = −Lx(t) + Lrr(t)

ẋ(t) = −
√

a2 + 1

R
x(t) + Lrr(t)

y(t) = x(t)

Lr has to be chosen so that we get a stationary gain of 1 from the reference

to the output, i.e. Gr→y(0) = C(−A+ BL)−1 BLr + D = 1.

We get Lr = (L − a) =
√

a2 + 1

R
.

b. See Matlab code below and Figure 8.1. Conclusion: Less weight on u gives a

faster system since we are allowed to move the control signal more, and vice

versa.

A = 1;

B = 1;

C = 1;

P = ss(A,B,C,0);

Q = 1;

Rvec = 0.001:0.001:0.5;

Evec = zeros(size(Rvec));

for i = 1:length(Rvec)

R = Rvec(i);

[L,S,E] = lqr(P,Q,R);

Evec(i) = E;

end

plot(Rvec, Evec)

xlabel(’Control signal weight’)

ylabel(’Closed-loop pole’)

grid
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Figure 8.1 Control signal weight versus closed-loop pole

8.2 See Figure 8.2 and Matlab code below

A = [1 0; 1 0];

B = [1 0]’;

C = [1 1];

Q = 1;

R = 1;

% using lqry

sys = ss(A,B,C,0);

[L2,S,E] = lqry(sys,Q,R)

eig(A-B*L2)

% simulate the system with initial conditions

sys = ss(A-B*L2,B,C,0);

x0 = [1 1];

initial(sys,x0); grid

% Solving the Riccati equation

Qr = C’*Q*C;

Rr = R;

S = zeros(2,1);

E = eye(2);

[X,K,G] = care(A,B,Qr,Rr,S,E);

L1 = Rr\B’*X

eig(A-B*L1)
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Figure 8.2 Response to initial conditions

8.3 The loop gain is

L(sI − A)−1B = 6

(s+ 1)(s+ 2)
Thus, as seen in figure 8.3, the Nyquist curve will approach the origin with

a phase of −180○. LQ-optimal loop gain always has an asympototic phase of

−90○. Therefore, it can not be an LQ-optimal state feed back vector.

8.4 The system has two unstable poles in 2 and 3. If the cost function should be

less than ∞ then the system must be stabilizable, i.e. all unstable poles must

be controllable (due to Q1 > 0). The controllability matrix is given by

Wc = (B AB) =
(−4 −12

8 24

)

which is a rank 1 matrix. Thus, only one of the modes is controllable meaning

that there is an uncontrollable, unstable mode, and hence, we can not make

the cost function less than ∞.

8.5 a. The cost function is J =
∫∞

0

xT(t)
(

1 0

0 2

)

x(t)+uT(t)Ru(t)dt, R = 0.01, 10, 1000.

b. See Figure 8.4 for step responses, and Matlab code below.

A = [1 3; 4 8]; B = [1; 0.1]; M = [0 1];

P = ss(A,B,M,0);
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Figure 8.3 Nyquist plot.

Q1 = [1 0; 0 2]; Q2_vector = [0.01 10 100];

for i=1:length(Q2_vector)

[L,S,E] = lqr(P,Q1,Q2_vector(i));

% Calculating Lr (static gain to output must be 1)

Lr = 1/(M/(B*L-A)*B);

% Calculating the control signal:

to_control_signal = Lr-L*ss(A-B*L,B*Lr,eye(2),0);

% Calculating the output signal:

to_output_signal = ss(A-B*L,B*Lr,M,0);

% Plotting step responses

figure(11)

subplot(3,2,i*2-1)

step(to_control_signal)

axis([0 10 -Inf Inf])

title([’Control signal, Q_2=’ num2str(Q2_vector(i))])

subplot(3,2,i*2)

step(to_output_signal)

axis([0 10 -Inf Inf])

title([’Output signal, Q_2=’ num2str(Q2_vector(i))])

poles{i} = E;

end

poles{:}
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Figure 8.4 Step responses for different weight on control signal.

8.6 a. Put

S =
(

s1 s2

s2 s3

)

and solve the Ricatti equation

Q1 + AT S + S A− SBQ−1
2 BT S = 0.

This gives

(

0 0

s1 s2

)

+
(

0 s1

0 s2

)

+
(

1 0

0 0

)

− 1

0.1
·

(

s2
2 s2s3

s2s3 s2
3

)

= 0,

with the solution

s1 =
√

2 · 10−1/4,

s2 = 10−1/2,

s3 =
√

2 · 10−3/4.

The optimal controller is given by

L = Q−1
2 BT S = (

√
10

√
2 · 101/4).
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To get y = r in stationarity:

1 = G(0) = M(−A+ BL)−1 BLr [ Lr =
√

10.

b. Both x1 and x2 must be measured, e.g.

C =
(

1 0

0 1

)

.

c. 3. is the only case with a cost on the velocity x2. This makes the controller

try to avoid rapid variations in x1, so we get 3.− D), the only step response

without overshoot. The weight, Q2, on the control signal determines the speed

of the system. A low weight on the control signal gives a faster system since

we are allowed to use more control signal. This gives 1.−C), 2.− A), 4.− B).

8.7 a. Weighting matrices Q1 =
(

1 0

0 0

)

och Q2 = η. The Riccati equation to be

solved with respect to S is

AT S + S A+ Q1 − SBQ−1
2 BT S = 0

Put

S =
(

s1 s2

s2 s3

)

,

which gives

(

0 0

s1 s2

)

+
(

0 s1

0 s2

)

+
(

1 0

0 0

)

− 1

η
·

(

s2
2 s2s3

s2s3 s2
3

)

= 0

We see, by insertion, that

s1 =
√

2 · η1/4

s2 = η1/2

s3 =
√

2 · η3/4

solves the Riccati equation.

b. The optimal state feedback is

L = Q−1
2 BT S = 1

η
· ( 0 1 )

( √
2η1/4 η1/2

η1/2 √
2 · η−3/4

)

= 1

η
· (η1/2 √

2η3/4) = (η−1/2 √
2 · η−1/4)

The poles are the eigenvalues to A−BL. Put µ = η−1/4 [ L = ( µ2
√

2 · µ ) .

This gives

0 = det

(

s −1

µ2 s+
√

2 · µ

)

= s2 +
√

2µs+ µ2,

that is

s = − µ√
2
±

√

µ2

2
− µ2 = − µ√

2
± i ·

µ√
2
=
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Solutions to Exercise 8

= − µ√
2
· (1± i) = − 1√

2 · η1/4 · (1± i)

If η is reduced, the distance between the poles and the origin will increase.

This means that u(t) will increase. Check the criterion!
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Solutions to Exercise 9. Kalman Filtering, LQG

9.1 a. We have that A = B = C = N = M = 1. The Riccati equation thus reduces

to

2P + R1 −
P2

R2

= 0,

which has the positive semi-definite solution P = R2 + R2

√

1+ R1
R2

. Thus,

the Kalman filter gain is

K = 1

R2

P = 1+
√

1+ R1

R2

= 1+
√

1+ β.

b. The Kalman filter dynamics are given by

˙̂x(t) = Ax̂(t) + Bu(t) + K(y(t) − Cx̂(t))

where y(t) = Cx(t) + v2(t). Using the values A = B = C = N = M = 1 we

have the error dynamics

ė(t) = (A−KC)e(t)−Kv2(t)+v1(t) = −
√

1+ β e(t)−(1+
√

1+ β)v2(t)+v1(t)

c. The position of the Kalman filter pole is −
√

1+ β . We can see that if β →∞,

the pole of the Kalmanfilter → −∞. Hence, the estimation error dynamics

are fast, we believe very much in our measurements. On the other hand, if

β → 0, the Kalman filter pole tends to -1, that is, as fast as the process pole.

Now, we trust the model more than the measurements.

9.2 See Matlab code below.

>> A = [0 1;1 0];

>> C = [1 0];

>> N = [1 1]’;

a. >> % Using care

>> Q = N*N’;

>> R = 1;

>> S = zeros(2,1);

>> E = eye(2);

>> [X,K,G] = care(A’, C’, Q, R, S, E);

>> K1 = X*C’

K1 =

2.4142

2.4142
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Solutions to Exercise 9

>> eig(A-K1*C)

ans =

-1.4142

-1.0000

b. >> % Using lqe

>> [K2,P,E] = lqe(A,N,C,1,1,0)

K2 =

2.4142

2.4142

P =

2.4142 2.4142

2.4142 2.4142

E =

-1.4142

-1.0000

>> eig(A-K2*C)

ans =

-1.4142

-1.0000

9.3 a. The noise model has the following state-space realization,

ẋw(t) = − δ xw(t) + n(t)
w(t) =xw(t)

Extending the state-space model of the process with the noise model gives,

ẋe(t) =
(−1 0

0 −δ

)

xe(t) +
(

1

0

)

u(t) +
(

1 0

0 1

)

v1e(t)

y(t) = ( 1 1 ) xe(t) + v2(t)
z(t) = ( 1 1 ) xe(t)

Note here that z(t) contains the noise state xw(t), so that, if we design an

LQG controller we will try to minimize the disturbance state effect also.
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Solutions to Exercise 9

b.

˙̂x(t) = Ae x̂(t) + Beu(t) + K(t)(y(t) − Cx̂(t))
K(t) = P(t)CT

e R−1
2

Ṗ(t) = Ae P(t) + P AT
e − K(t)R2 KT(t) + N R1 N

φvi
= 1

u(t) = −Lx̂(t)
L = Q−1

2 BT
e S

0 = AT
e S + S A+ MT Q1 M − SBeQ−1

2 BT S

We are looking for the stationary Kalman filter and therefore solve for Ṗ(t) =
0 as before. Ri are noise intensities and Qi are the weighting matrices for the

LQ-problem.

See Matlab code in (d). Why do we need a small weight on u(t)? Since integral

action requires the control signal magnitude to be large at low frequencies we

have to let the control signal be large, otherwise the low frequency gain will

be limited independent of noise model.

c. If we change the cut-off frequency of the noise filter, we change the cut-

off frequency of the low frequency gain of the controller, this is shown in

Figure 9.1.

If we on the other hand change the noise intensity, we indirectly change the

gain of the noise filter. Hence, we will increase the controller gain for all

frequencies, see Figure 9.2.

d. Response to constant load disturbances will always have a static error since

we do not have infinite gain at low frequencies. That is, we do not have pure

integral action, only approximative.

See below for Matlab code,

B = [1; 0];

C = [1 1];

D = 0;

N = eye(2);

H = [0 0];

% Different values of cut-off frequency of noise filter

% Note that the values in the diagonal of the disturbance

% filter inputintensity matrix [1 0; 0 100] are arbitrary;

% their relation will later be varied

A = [-1 0; 0 -0.1];

sys = ss(A, [B N], C, [D H]);

[Kest,L,P] = kalman(sys, [1 0; 0 100], 1);

P = ss(A,B,C,D);

[K,S,E] = lqry(P,1,0.0000001,0);

R1 = lqgreg(Kest,K);

A = [-1 0; 0 -0.001];
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Figure 9.1 Change of cut-off frequency

sys = ss(A,[B N],C,[D H]);

[Kest,L,P] = kalman(sys,[1 0; 0 100],1);

P = ss(A,B,C,D);

[K,S,E] = lqry(P,1,0.0000001,0);

R2 = lqgreg(Kest,K);

A = [-1 0; 0 -0.00001];

sys = ss(A,[B N],C,[D H]);

[Kest,L,P] = kalman(sys,[1 0; 0 100],1);

P = ss(A,B,C,D);

[K,S,E] = lqry(P,1,0.0000001,0);

R3 = lqgreg(Kest,K);

figure(1)

bode(R1,R2,’--’,R3,’-.’); grid

legend(’R1’,’R2’,’R3’)

title(’Cut-off frequency change’)

% Different values of the disturbance filter input intensity

A = [-1 0; 0 -0.001];

sys = ss(A,[B N],C,[D H]);

[Kest,L,P] = kalman(sys,[1 0; 0 1],1);
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Figure 9.2 Change of noise intensity

P = ss(A,B,C,D);

[K,S,E] = lqry(P,1,0.0000001,0);

R1 = lqgreg(Kest,K);

A = [-1 0;0 -0.001];

sys = ss(A, [B N], C, [D H]);

[Kest, L, P]=kalman(sys, [1 0; 0 10], 1);

P = ss(A, B, C, D);

[K,S,E] = lqry(P,1,0.0000001,0);

R2 = lqgreg(Kest,K);

A = [-1 0; 0 -0.001];

sys = ss(A,[B N],C,[D H]);

[Kest,L,P] = kalman(sys,[1 0; 0 100],1);

P = ss(A,B,C,D);

[K,S,E] = lqry(P,1,0.0000001,0);

R3 = lqgreg(Kest,K);

figure(2)

bode(R1,R2,’--’,R3,’-.’);grid

legend(’R1’,’R2’,’R3’)

title(’Intensity change’)

57



Solutions to Exercise 9

9.4 a. To get a small complementary sensitivity at the oscillation frequency, we need

the LQG controller to have a low gain at this frequency; effectively ignoring

corresponding oscillations in the output y. This can be achieved by modelling

the influence of the oscillatory system as a disturbance w on y according to

ẋ = Ax+ Bu + Nv1

y = Cx+w+ v2

To model the oscillatory characteristics of w, we can consider w to be generated

by passing white noise n through a second-order filter with a resonance peak

at ω0 = 0.5 rad/s and a zero at s = 0, with transfer function

H(s) = Kvs

s2 + 2ζω0s+ω2
0

.

The zero at s = 0 is placed there to avoid an increased gain at low frequencies,

which would otherwise follow. It is not necessary unless it is important to avoid

this phenomenon and the exercise can be solved without it, which will then

yield a slightly different solution to the one below.

The parameter ζ determines the magnitude of the resonance peak, and we

can choose e.g. ζ = 0.02.

In state-space form, the filter is given by

ẋv(t) =
(

−0.02 −0.25

1 0

)

xv(t) +
(

1

0

)

n(t)

w(t) = ( Kv 0 ) xv(t)

Extend the original state-space form with the noise model

ẋ(t) =








0 1 0 0

0 −1 0 0

0 0 −0.02 −0.25

0 0 1 0








x(t) +








0

1

0

0








u(t) +








0.1 0

0.1 0

0 1

0 0








(

v1(t)
n(t)

)

y(t) = ( 1 0 Kv 0 ) x(t) + v2(t)
z(t) = ( 1 0 0 0 ) x(t)

If this model is used to compute K in the Kalman filter, for an appropriate

value of Kv, we get supression of the resonance frequency. The intensity of

the added noise input can e.g. be set to 1 since we can control the amplitude

of the disturbance by changing Kv. Thus, we have the intensity matrices

R1 = diag(1, 1), R2 = 0.1.

Note that z(t) do not depend on the xv-states, i.e., if we are about to design

an LQG controller, we have no weight on the added noise. The added noise is

only used for specifying at what frequencies our measurements are uncertain.

b. See figure 9.3 for the Bode plot of the transfer function from measurement

y(t) to estimated output ŷ(t) using Kv = 1. We see a large attenuation of

frequencies at ω = 0.5 rad/s.

Matlab code
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Figure 9.3 Attenuation of oscillative disturbance

A = [0 1 0 0; 0 -1 0 0; 0 0 -0.02 -0.2501; 0 0 1 0];

B = [0 1 0 0]’

C = [1 0 1 0];

N = [0.1 0; 0.1 0; 0 1; 0 0];

[K,P,E] = lqe(A,N,C,blkdiag(1,1),0.1);

Cnom = [1 0 0 0];

tf(ss(A-K*C,K,Cnom,0))

bode(ss(A-K*C,K,Cnom,0),{0.1,100})

grid

9.5 a. We have the state-space representation

ẋ(t) =
(

0 1

0 0

)

x(t) +
(

0

1

)

u(t) +
(

0

1

)

v1(t)

y(t) = ( 1 0 ) + v2(t)

(If a different state-space representation is chosen, the solution will look

different although the steps will be similar.)

The Riccati-equation

AP + P AT + N R1 NT − PCT R−1
2 C P = 0

is solved by letting P =
(

p1 p2

p2 p3

)

. The equations become,
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2p2 − p2
1 = 0

p3 − p1p2 = 0

1− p2
2 = 0

The solution is thus

P =
(

√
2 1

1
√

2

)

with the optimal gain

K = PCT = (
√

2 1 )T

b. The poles of the Kalman filter are the eigenvalues of A− KC,

A− KC =
(−
√

2 1

−1 0

)

with the eigenvalues λ j =
1√
2
(−1± i).
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Solutions to Exercise 10. LQG, Preparations for Lab 3

10.1 a. See c.

b. Using the state vector xe = ( xT x̂T )T and the obvious notation A, B, C, we

get the system

ẋe =
(

A −BL

KC A− BL − KC

)

xe +
(

I

0

)

v1 +
(

0

K

)

v2

z = (C 0 ) xe

c. With less measurement noise the estimated states converge faster to the

actual states, and the output z converge faster to zero. See Figures 10.1-10.2

and Matlab code below.

As shown in exercise 9.1, only the relation between process noise and mea-

surement noise matters. More process noise will therefore have the same

effect as less measurement noise.
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Figure 10.1 Initial response if little measurement noise ( R2
R1
= 0.1).

A = [0 1; 0 0];

B = [1 6; 0 4];

C = [1 1];

D = zeros(1,2);

% State feed-back design
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Figure 10.2 Initial response if much measurement noise ( R2
R1
= 100).

process = ss(A,B,C,D);

Q1 = 1;

Q2 = eye(2);

[L,S,E] = lqry(process,Q1,Q2);

% Kalman filter design

G = eye(2);

H =zeros(1,2);

syskalman = ss(A,[B G],C,[D H]);

R1 = eye(2);

R2 = 1;

[Kest,K,E] = kalman(syskalman,R1,R2);

% Construct closed loop

reg = lqgreg(Kest,L);

closed_loop = feedback(process,-reg);

% Plot response

[Y,T,X] = initial(closed_loop,[1 -1 0 0],0:0.01:20);

subplot(311)

plot(T, X(:,1)); hold on; plot(T, X(:,3),’--’); grid

legend(’x1’,’x1hat’); ylabel(’x1, x1hat’)

subplot(312)

plot(T, X(:,2)); hold on; plot(T, X(:,4),’--’); grid

legend(’x2’,’x2hat’); ylabel(’x2, x2hat’)

subplot(313)

plot(T,Y); grid; ylabel(’y’);
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10.2 First of all, we see that we can not measure the states we want to control, so

we need a Kalman filter. We start by setting up the problem in the standard

form

ẋ =
(

0 1

0 0

)

x+
(

0

1

)

u+ v1

y = ( 1 0 ) x+ v2

z = x

where v2 is white noise with intensity 1. The cost function is

J =
∞

∫

0

(

zT Q1z+ uQ2u
)

dt

with Q1 = I2 and Q2 = 1.

For the state feed-back gain, we have to solve the Riccati equation

AT S + S A+ Q1 − SBQ−1
2 BT S = 0

This gives the following equations,

1− s2
2 = 0

s1 − s2s3 = 0

2s2 + 1− s2
3 = 0

with the solution s1 = s3 =
√

3, s2 = 1. This gives the state feed-back vector

L = BT S = ( 1
√

3 ).
For the Kalman filter we must solve the Riccati equation

AP + P AT + R1 − PCTC PT = 0

with R1 = I2, which gives

2p2 + 1− p2
1 = 0

p3 − p1p2 = 0

1− p2
2 = 0

Using the solution for S we have that p1 = p3 =
√

3 and p2 = 1 and

K = PCT =
(

√
3

1

)

The controller is given by

˙̂x = (A− BL − KC)x̂+ Ky

u = −Lx̂

and we have that

A− BL − KC =
(−
√

3 1

−2 −
√

3

)

10.3 No solution provided.
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Solutions to Exercise 11. Youla Parametrization, Internal

Model Control

11.1 a. We can divide P even further into smaller parts such that

Pzw =



Pxd Pxn

Pvd Pvn



 , Pzu =



Pxu

Pvu



 , Pyw =


 Pyd Pyn





Looking at the block diagram of the closed-loop system, we see that

Pxd = P0, Pxn = 0, Pvd = 1, Pvn = 0

Pxu = P0, Pvu = 1

Pyd = P0, Pyn = 1

Pyu = P0

Note that you have to determine the open-loop transfer functions, as if C = 0.

The results gives us the following transfer matrix P :

P =





P0 0 P0

1 0 1

P0 1 P0




,

where

Pzw =



P0 0

1 0



 , Pzu =



P0

1



 , Pyw =


 P0 1



 , Pyu = P0

b.

u = Cy

y = Pyuu+ Pyww = PyuCy+ Pyww [ y = 1

1− PywC
Pyww

z = Pzww+ Pzuu = Pzww+ PzuCy = (Pzw + PzuC
1

1− PywC
Pyw)w

c. Using the formula, we get

H = Pzw + PzuC(1− PyuC)−1 Pyw

=



P0 0

1 0



+



P0

1



 C(1− P0C)−1


 P0 1





=



P0 0

1 0



+ C

1− P0C




P2

0 P0

P0 1





= 1

1− P0C




(P0 − P2

0C) + P2
0C P0C

(1− P0C) + P0C C



 =



P0 S −T

S C S




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Figure 11.1 Mass spring system in Problem 11.2.

This means that the closed loop transfer function H consists of the gang of

four. Note that

T = 1− S = − P0C

1− P0C

in this case where we have no explicit minus sign in the feedback loop.

d. Go back to the formula H = Pzw + PzuC(1− PyuC)−1 Pyw, but replace C(1−
PyuC)−1 with Q. This gives

H = Pzw + PzuQPyw =



P0 0

1 0



+ Q




P2

0 P0

P0 1



 =



P0 + P2

0 Q P0Q

1+ P0Q Q





where each element of H is linear in Q.

11.2 a. From the equation for the plant

ẋ = Ax+ Bu

p1 = C1 x

p2 = C2 x
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Solutions to Exercise 11

and the block diagram of the closed-loop system, we can see that

ẋ = Ax+ B(u + d) = Ax+ ( 0 0 B )






r

n

d




+ Bu

= Ax+ Bww+ Bu

z =






p1

uo

e




 =






C1x

u+ d

r− p1




 =






C1x

u+ d

r− C1x






=






C1

0

−C1




 x+






0 0 0

0 0 1

1 0 0











r

n

d




+






0

1

0




 u

= Czx+ Dzww+ Dzuu

y =
(

r

p2 + n

)

=
(

r

C2x+ n

)

=
(

0

C2

)

x+
(

1 0 0

0 1 0

)






r

n

d




+

(

0

0

)

u

= Cyx+ Dyww+ Dyuu

b. The constraint on the maximum control signal, qu(t)q ≤ umax, will correspond

to the closed loop transfer matrix Huor, with index (2, 1). In problem 11.1

we saw that the transfer function Huod will correspond to the sensitivity

function S. The Ms constraint will therefore correspond to the index (2, 3).
The objective function will be related to two indices, namely those associated

with Her and Huor, (3, 1) and (2, 1).
c. We have the formula H = Pzw + PzuQPyw. Since Pzu is a 3 $ 1 system and

Pyw is a 2$3 system, Q must be 1$2. Therefore we have that Q = [Q1 Q2].

11.3 The system is non-minimum phase. There are many ways to choose the Q

filter for IMC, but we have to respect some fundamental limitations. Here

we will use a simple choice of Q. We try to cancel the process dynamics with

Q(s), but use the stable counterpart 6+ 3s of the zero instead. We also need

to add a pole to Q(s) to make it proper, which we place in s = −λ−1. We get

Q(s) = s2 + 5s+ 6

(6+ 3s)(λs + 1) =
s+ 3

3(λs+ 1)
The controller becomes

C(s) = s2 + 5s+ 6

s(3λs + 6(λ+ 1))
which can be rewritten as

C(s) = 5

6(1+ λ)

(

1+ 6

5s
+ s

5

)

1
3λ

6(λ+1)s+ 1
.

This corresponds to a PID controller in series with a lowpass filter.
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Solutions to Exercise 11

11.4 As before, there are many ways to apply IMC. Here we try the two approaches

to deal with time delays described in Glad&Ljung section 8.3.

1. Choose to ignore the time delay when the Q(s) transfer function is

calculated, but not when Fy(s) is calculated.

Thus, we get

Q(s) = (P(s)e4s)−1

λs+ 1

Hence, the controller is given by

Fy(s) =
Q(s)

1− Q(s)P(s) =
s+ 1

λs+ 1− e−4s

2. Approximate the time delay with a first order Padé approximation,

G(s) ( 1

s+ 1

1− 2s

1+ 2s
.

When we calculate the Q(s)-transfer function, we exclude 1 − 2s. Thus,

we now have

Q(s) = (s+ 1)(2s+ 1)
(λs+ 1)2 .

Hence we have the controller

Fy(s) =
Q(s)

1− Q(s)P(s) =
(s+ 1)(2s + 1)

(λs+ 1)2 − (1+ 2s)e−4s

The Nyquist plots can be generated in Matlab, using the following lines of

code. In this case, lambda is chosen to 3.

>> lambda = 3;

>> w = logspace(-2,2,1000);

>> P = 1./(1+i*w).*exp(-4*i*w);

>> Fy1 = (i*w+1)./(lambda*i*w+1-exp(-4*i*w));

>> Fy2 = (i*w+1).*(1+2i*w)./((lambda*i*w+1).*(lambda*i*w+1)-(1+2*i*w).*exp(-4*i*w))

>> figure

>> plot(P.*Fy1)

>> grid

>> figure

>> plot(P.*Fy2)

>> grid

From the plots (Figure 11.2) we see that neither encircles −1 and the closed

loop systems are stable in both cases.
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−0.5
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P*Fy1
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0.5
P*Fy2

Figure 11.2 Nyquist plots of the loop transfer functions in Problem 11.4. The left plot shows

the first alternative and the right plot shows the second.
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Solutions to Exercise 12. Synthesis by Convex

Optimization

12.1 a. The inputs to the controller are r and y0, i.e.

y =
(

r

y0

)

.

The input to P is

(

w

u

)

, which contains 4 signals, and the output is

(

z

y

)

,

which contains 4 signals as well. Thus P must be 4$ 4.

b. We know that

(

z

y

)

=








e

u

r

y0








,

(

w

u

)

=








d

n

r

u








.

The block diagram gives that

e = r− x = r− P0(d+ u),
u = u,

r = r,

y0 = n+ P0(d+ u).

Arranging this into matrix form gives the answer:

P =








−P0 0 1 −P0

0 0 0 1

0 0 1 0

P0 1 0 P0








.

c. The control objective a) is convex in H, and H is a linear function of Q, so

the control objective a) is convex in Q. Since it is satisfied for Q1 and Q2, it

is thus satisfied for any convex combination

Q = wQ1 + (1−w)Q2, w ∈ [0, 1].

We see from the impulse responses that neither Q1 nor Q2 satisfies b) or

c). However, a convex combination of Q1 and Q2 will give the same convex

combination of the disturbance responses. Taking e.g. w = 0.7,

• The control signal satisfies pu(t)p ≤ 0.7 ·0.4+0.3 ·2 = 0.88, since pu(t)p ≤
0.4 with C1 and pu(t)p ≤ 2 with C2.

• When t ≥ 2, the control error satisfies pe(t)p ≤ 0.7 · 1+ 0.3 · 0.1 = 0.73,

since pe(t)p ≤ 1 with C1 and pe(t)p ≤ 0.1 with C2.

Thus we can use Q = 0.7Q1 + 0.3Q2.

12.2 a. See the plots in Figure 12.1-12.2 and read the figure texts. We see that the

only inactive constraint is the one on the control signal. Also see Figure 12.3

for a Nyquist plot with a circle for the Ms-constraint.
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Figure 12.1 Step responses from reference r to mass position p1 and to control signal u.

b. bodemag(K2d)

The gain curve is shown in Figure 12.4. The shape of the magnitude plot is

very similar to that of a PD controller. Since the D-part of a PID controller

acts to damp out oscillations, it makes sense that we have this kind of simi-

larity.

The system has its resonance frequency at 5.8 rad/s, which is almost ex-

actly at the same frequency as the deepest dip in the controller magnitude

plot. The reason for the dip is that we do not want to amplify signals at this

frequency. A PD controller does not have this kind of flexibility in its structure

to damp out a certain frequency and is therefore not so well suited for highly

oscillative systems like this one.

c. The least value on NQ, for which our problem is feasible, is 7.

d. See Figure 12.5 for a plot of the cost function value versus the order of the

Q filters. When NQ reaches around 20, the control will gain very little from

increased complexity of the Q filter. We can then say that we have a good

estimate of the Limit of Performance, i.e. lowest cost that linear controller

can achieve given the problem setup.
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Frequency [rad/s]
10 -1 10 0 10 1

10 -1

10 0

Sensitivity function

Figure 12.2 The sensitivity function of the system. The plot that violates the constraint

correspond to the nominal control.
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Nyquist Plot

Figure 12.3 The open-loop Nyquist curve and the Ms-circle when the optimal controller is

used.

The maximum value of the control signal will decrease as the order of the Q

filters goes up. For NQ= [7, 10, 15, 20], we get umax = [6.0, 4.9, 3.8, 3.7]. This

means that the more complex the controller becomes, the more freedom it will

have to choose its control signal. As it is good to have a control signal that is

low on energy (due to the cost function), it is also likely that it goes down in

magnitude if it has the possibility.

e. If we start out by setting ρ = 0 (i.e. weight_u = 0.0), then we do not punish

the control signal energy at all, which means that we may get very aggressive

and poorly damped control. The constraint on umax will to some extent prevent
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Figure 12.4 Bode diagram of the controller.
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Figure 12.5 Cost function value plotted against the complexity of the Q filters.

this, but if umax is made arbitrarily large then we can get a step responses

like the one in Figure 12.6. If instead γ = 0 while ρ remains 1, then the

solution will remain fairly unchanged. The reason is that both the constraints

on rise time and the cost of having a large e will force u to be quite active

still. If the step response constraints are made inactive, the solution will be

fairly close to the one of the nominal LQG controller.

f. Looking in the files we find that Gcl corresponds to the closed loop transfer

matrix. We can plot the magnitude curves with the command

bodemag(Gcl).

We see that the transfer function in the middle, Huon, does not have high
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Figure 12.6 p1 due to a reference step when ρ = 0. The control is very aggressive.

frequency roll-off. High frequency measurement noise, n, may therefore lead

to a very noise control signal. This shows that it is very important to take

all signals in a system into consideration and that a solution, even though

"optimal", might not be good, i.e. "You get what you ask for". If we were to

modify the problem, a good idea would be to put constraints on this closed-loop

transfer function as well.

g. First define the constraint for the step response d → p1,

ub_cl_diststep = min(1, exp(-0.2*(t-5)));

and then add it to the optimization problem with

-ub_cl_diststep <= cl_stepresp(:,1,3) <= ub_cl_diststep;

If we try to solve the problem, we will see that it is has become infeasible. By

increasing the order of the Q-filters by putting NQ=30, you will be able to find

a solution. See figures 12.7 and 12.8.

h. No solution given.
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Figure 12.7 Disturbance step when the controller has been designed with respect to the

disturbance rejection constraint (blue) and the original controller (red).
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Figure 12.8 Controller gain when the controller has been designed with respect to a distur-

bance rejection constraint (blue) and original controller (red). Note that the low frequency gain

is much higher for the controller that was designed for step disturbance rejection, this can be

seen as increased "integral action".
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Solutions to Exercise 13. Controller Simplification

13.1 a. Inspection of the locations of the poles and zeros gives us the transfer function

G(s) = 1.04
s/1.3+ 1

(s/1.2+ 1)(s2 + 0.4s+ 1.04)

b. The closeness of the pole-zero pair on the real axis suggests that a model

reduction might be possible.

c. A balanced realization and the Hankel singular values for the system can be

calculated using the Matlab command

>>> s = tf(’s’);

>>> G = 1.04*(s/1.3+1)/((s/1.2+1)*(s^2+0.4*s+1.04));

>>> [balr,g] = balreal(G);

which gives the following Hankel singular values:

� =






1.5105

1.0196

0.0091






Elimination of the state in the balanced realization corresponding to the

smallest Hankel singular value is done in Matlab by

>>> modsys = modred(balr,g<0.01)

>>> modsysG = tf(modsys)

This gives the following transfer function for the reduced order system:

Gred(s) = 0.0181
s2 − 2.412s+ 57.49

s2 + 0.4086s+ 1.043

A Bode magnitude plot of the original system and the reduced system is

shown in figure 13.1.

13.2 a. With

S =
(

2 0

0 1

)

, A =
(−1 0

−1 −0.5

)

, B =
(

2

1

)

we have

AS + S AT + BBT =
(−2 0

−2 −0.5

)

+
(−2 −2

0 −0.5

)

+
(

2

1

)(

2

1

)T

=
(

0 0

0 0

)

so S is the controllability gramian. Similarly, with

O =
(

0.5 0

0 1

)

OA+ATO+CTC =
(−0.5 0

−1 −0.5

)

+
(−0.5 −1

0 −0.5

)

+
(

1

1

)

( 1 1 ) =
(

0 0

0 0

)

so O is the observability gramian.
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Figure 13.1 Bode magnitude plot of the original and reduced system in Problem 13.1

b. The Hankel singular values are the eigenvalues of

SO =
(

1 0

0 1

)

so they are both 1.

c. The coordinate change ξ = Tx yields the new gramians Sξ = T STT and

Oξ = T−TOT−1. To find T we solve the equation Sξ = Oξ . Since both S

and O are diagonal it seems reasonable that a diagonal T will work. With

T =
(

t1 0

0 t2

)

we get the equations

T STT =
(

t1 0

0 t2

)(

2 0

0 1

)(

t1 0

0 t2

)

=
(

2t1
2 0

0 t2
2

)

and

T−TOT−1 =
(

1/t1 0

0 1/t2

)(

0.5 0

0 1

)(

1/t1 0

0 1/t2

)

=
(

0.5/t1
2 0

0 1/t2
2

)

which gives

2t1
2 = 0.5/t1

2 [ t1
4 = 1/4 [ t1 = 1/

√
2

t2
2 = 1/t2

2 [ t2
4 = 1 [ t2 = 1

.

(You could also use the direct formula for T in the proof on page 81 in [Glad

& Ljung])

With this T

T =
( 1√

2
0

0 1

)

the gramians become

Sξ =
(

1 0

0 1

)

Oξ =
(

1 0

0 1

)

.
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Hence, a balanced realization is

ξ̇ = Âξ + B̂u

y = Ĉξ + D̂u

where

Â = T AT−1 =
( −1 0

−
√

2 −0.5

)

B̂ = TB =
(

√
2

1

)

Ĉ = CT−1 = (
√

2 1 ) D̂ = D

d. In this case, the Hankel singular values have the same size, therefore either

could be removed. (However, this means that it is probably not a good idea

to do any truncation at all!) If the second state is removed by letting ξ̇2 = 0,

ξ2 can be expressed in terms of ξ1 through 0 = Â21ξ1 + Â22ξ2 + B̂2u. The

reduced realization then becomes

ξ̇1 = ( Â11 − Â12 Â−1
22 Â21)ξ1 + (B̂1 − Â12 Â−1

22 B̂2)u
yr = (Ĉ1 − Ĉ2 Â−1

22 Â21)ξ1 + (D̂ − Ĉ2 Â−1
22 B̂2)u

where for example Â21 is the element in the second row and first column in

Â.
ξ̇1 = −ξ1 +

√
2u

yr = −
√

2ξ1 + 12u

The transfer function is obtained through the Laplace transform

G1(s) = 12− 2

s+ 1

13.3 a. The Matlab command tf(ss(A,B,C,D)) gives

G(s) = 10s2 + 18s+ 5

s2 + 1.5s+ 0.5

b. Plotting the Bode diagram for G(s)−G1(s) through the command bodemag(G-G1)

gives 2 as the maximal error, obtained at large frequencies. The error bound,

twice the sum of the truncated singular values, also gives 2. In this case the

error bound is tight.

c. Truncating both states gives

G2 = D̂ − Ĉ Â−1B̂ = 10

d. Plotting bodemag(G-Gr) gives 2 as the maximal error, near ω = 1. The error

bound 2(1+ 1) = 4 is conservative.
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13.4 Through partial fractions one can write

2s2 + 2.99s+ 1

s(s+ 1)2 = 1

s
+ s+ 0.99

(s+ 1)2

The Matlab command

[G3bal,sig]=balreal(tf([1 .99],[1 2 1])) gives

si� =
(

0.4950

0.00001

)

so one state can be removed right away.

G3red=modred(G3bal,(sig<0.1)) yields

−2.525 · 10−5s+ 1

s+ 1.01
( 1

s+ 1.01

With the integrator we get the reduced system

1

s
+ 1

s+ 1.01
= 2s+ 1.01

s(s + 1.01)

The commands balreal and modred can actually be used directly on systems

with an integrator since they do the separation automatically.
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Solutions to Exercise 14. Old Exam

14.1 Partial fraction expansion gives

G(s) =
[

1
(s+1)(s+2)

s+3
(s+1)(s2+6s+8)

]

= 1

s+ 1

[

1 2
3

]

+ 1

s+ 2

[

−1 −1
2

]

+ 1

s+ 4

[

0 −1
6

]

so a realization on diagonal form can be written as

ẋ =





−1 0 0

0 −2 0

0 0 −4



 x+







1 2
3

−1 −1
2

0 −1
6






u

y = [ 1 1 1 ] x

14.2 Denote the output by z. The spectral density of z is then

Φz = pG(iω)p2 Φn(ω) =
1

iω + a

1

−iω + a
=

= 1

a2 +ω2

14.3

a. The bad damping in the disturbance response is a symptom of low phase

margin, which is approximately 20○ at ω c = 1 (as seen in the bode diagram).

The lead filter improves the phase margin, but the phase peak is located

between the zero and pole at

ωp =
√

1.79 · 8.94 = 4 rad/s,

which is far from ω c!

b. One way to improve the control is to move the phase peak to ω c = 1 by

dividing the pole and zero by 4. The new controller is

C′(s) = K

(

1+ 1

s

)

s/0.45+ 1

s/2.24+ 1
.

The gain K should be chosen so that the cross-over frequency is preserved,

that is pC′(iω c)p = pC(iω c)p, which gives K = 0.45.

The new controller gives an increase in phase margin of 19○. The high fre-

quency gain

lim
s→∞

C(s)

actually decreases from 4.39 to 2.24.
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14.4

a. Block scheme calculations gives

Gy2,m =
G2C1

1+ G1C1

= B1(s)(s2 −ω2
0)

s[A1(s)(s2 −ω2
0) + B1(s)ω2

0]

Note that this transfer function can be considered as the process in the outer

loop.

b. A process zero at z = ω0 imposes a constraint on the achievable bandwidth of

the closed loop system - it is not possible to achieve a bandwidth significantly

larger than ω0.

c. Plot D shows too high bandwidth of the closed loop to be feasible. Plot B and

C does not fulfill the pS + Tp = 1 constraint. Plot A shows a bandwidth of

about 1 rad/s which is reasonable - hence plot A.

14.5

a. The determinant of the system is

det(G2(s)) =
1

(s+ 1)(s+ 2)

such that the least common denominator of all submatrices is p(s) = (s +
1)(s + 2). Thus, the system have poles in −1, −2 and no zeros. Since the

system has poles in the open left halplane and no non-minimum phase zeros,

there are no fundamental limitations on the system bandwidth.

b.

RG A = G2(0). ∗ (GT
2 (0))−1 =




−0.5 0

−3 −1



 . ∗




−2 6

0 −1



 =



1 0

0 1





Since the RGA is the identity matrix we can expect the system to be easily

controlled with decentralized control at low frequencies. The identity matrix

also gives us that it is suitable to pair input 1 with output 1 and input 2 with

output 2.

14.6 Using the IMC method, we set Q(s) to

Q(s) = 1

(λs+ 1)n−m
G−1(s)

giving us the controller

C(s) = (1− Q(s)G(s))−1Q(s) =
(

1− 1

(λs+ 1)n−1

)−1 (s+ b)n
(s+ a)(λs+ 1)n−1

= (s+ b)n
(s+ a)((λs+ 1)n−1 − 1)
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To match the structure of the PID controller

K

sTi

(TiTds2 + Tis+ 1)
(s Td

N + 1)

we see that we will need to choose n = 2. This leaves us with

C(s) = b2

sλa

( 1
b2 s2 + 2

bs+ 1)
( s

a + 1) ,

such that we can now determine the PID parameters one by one

Ti =
2

b
, Td =

1

Tib2
= 1

2b
, K = b2Ti

λa
= 2b

λa
, N = Tda = a

2b
.

Since only K depends on λ, this is the only PID parameter that we have the

possibility to tune ourselves.

14.7 P can be said to consist of several submatrices

P =



Pzw Pzu

Pyw Pyu



 ,

where

Pzw =



Pe1r1

Pe1r2

Pe2r1
Pe2r2



 , Pzu =



Pe1u1

Pe1u2

Pe2u1
Pe2u2



 ,

Pyw =





Py1r1
Py1r2

Py2r1
Py2r2

Pr1r1
Pr1r2

Pr2r1
Pr2r2





, Pyu =





Py1u1
Py1u2

Py2u1
Py2u2

Pr1u1
Pr1u2

Pr2u1
Pr2u2





We can now determine all transfer functions that make up P :

Pzw =



1 0

0 1



 = I, Pzu =



−P0

11 −P0
12

−P0
21 −P0

22



 = −P0,

Pyw =





0 0

0 0

1 0

0 1





=



0

I



 , Pyu =





P0
11 P0

12

P0
21 P0

22

0 0

0 0





=



P0

0





14.8

a. Zeros of a multivariate process are defined as the points where the transfer

matrix looses rank. For a quadratic matrix, losing rank is equivalent to the

determinant being zero. The zeros are given by the equation:

det P(s) = 2s+ 5

(s+ 4)(s+ 2)(s+ 1) = 0

Thus s = -2.5
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b. Here RGA(0) is calculated.

G(0) =
[

0.5 −0.5

1 0.25

]

Then RGA(0) becomes

RG A(0) = G(0). ∗ (G(0)−1)T =
[

0.2 0.8

0.8 0.2

]

and thus output 1 should pair with input 2 and output 2 with input 1.

14.9 We see that A and C will give the same controller since we have just scaled

the weights by 100, so A and C will correspond to Step response 1 and 2.

Notice that the system is very oscillative. D has much larger weight on the

control signal, thus we will not be able to get a fast system that dampens

the oscillative system, hence D must correspond to Step response 3. B will

correspond to Step response 4. We have very small weight on the control

signal compared to output, which will give a fast system.
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