
FRTN10 Exercise 13. Controller Simplification

13.1 Consider a SISO system for which the pole-zero map is given in Figure 13.1.

a. Determine the transfer function of the system. You can assume that the static

gain is G(0) = 1.

b. By studying the pole-zero map, it is possible to get a hint that the system is

a candidate for model order reduction. How?

c. Use a computer to calculate a balanced realization and the Hankel singular

values of the system. Perform a model reduction by eliminating the state

corresponding to the smallest singular value.

Useful commands: balreal, modred.
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Figure 13.1 Pole-zero map of the system in Problem 13.1

13.2 For the system

(

ẋ1

ẋ2

)

=
(−1 0

−1 −0.5

)(

x1

x2

)

+
(

2

1

)

u

y = ( 1 1 )
(

x1

x2

)

+ 10u

solve the following problems by hand:

a. Verify that the controllability gramian is

(

2 0

0 1

)

while

(

0.5 0

0 1

)

is the

observability gramian.

b. Determine the Hankel singular values.

c. Find a coordinate change that gives a balanced realization.

d. Find a reduced system G1(s) by truncating the state corresponding to the

smallest Hankel singular value.
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Exercise 13. Controller Simplification

13.3 For the same system and notation as in the previous problem, use a computer

for the following:

a. Find the transfer function G(s) from u to y.

b. Compare the error maxω pG(iω) − G1(iω)p with the error bound for balanced

truncation.

c. Find a reduced system G2 by truncating both states and keeping just a

constant gain.

d. Compare the error maxω pG(iω) − G2(iω)p with the error bound for balanced

truncation.

13.4 Find a reduced order approximation of

2s2 + 2.99s+ 1

s(s+ 1)2

by writing the transfer function as the sum of an integrator and a stable

transfer function, then applying balanced truncation to the stable part. You

may use a computer.
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Solutions 13. Controller Simplification

Solutions to Exercise 13. Controller Simplification

13.1 a. Inspection of the locations of the poles and zeros gives us the transfer function

G(s) = 1.04
s/1.3+ 1

(s/1.2+ 1)(s2 + 0.4s+ 1.04)

b. The closeness of the pole-zero pair on the real axis suggests that a model

reduction might be possible.

c. A balanced realization and the Hankel singular values for the system can be

calculated using the Matlab command

>>> s = tf(’s’);

>>> G = 1.04*(s/1.3+1)/((s/1.2+1)*(s^2+0.4*s+1.04));

>>> [balr,g] = balreal(G);

which gives the following Hankel singular values:

� =







1.5105

1.0196

0.0091







Elimination of the state in the balanced realization corresponding to the

smallest Hankel singular value is done in Matlab by

>>> modsys = modred(balr,g<0.01)

>>> modsysG = tf(modsys)

This gives the following transfer function for the reduced order system:

Gred(s) = 0.0181
s2 − 2.412s+ 57.49

s2 + 0.4086s+ 1.043

A Bode magnitude plot of the original system and the reduced system is

shown in figure 13.1.

13.2 a. With

S =
(

2 0

0 1

)

, A =
(−1 0

−1 −0.5

)

, B =
(

2

1

)

we have

AS + S AT + BBT =
(−2 0

−2 −0.5

)

+
(−2 −2

0 −0.5

)

+
(

2

1

)(

2

1

)T

=
(

0 0

0 0

)

so S is the controllability gramian. Similarly, with

O =
(

0.5 0

0 1

)

OA+ATO+CTC =
(−0.5 0

−1 −0.5

)

+
(−0.5 −1

0 −0.5

)

+
(

1

1

)

( 1 1 ) =
(

0 0

0 0

)

so O is the observability gramian.
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Figure 13.1 Bode magnitude plot of the original and reduced system in Problem 13.1

b. The Hankel singular values are the eigenvalues of

SO =
(

1 0

0 1

)

so they are both 1.

c. The coordinate change ξ = T x yields the new gramians Sξ = T STT and

Oξ = T−TOT−1. To find T we solve the equation Sξ = Oξ . Since both S

and O are diagonal it seems reasonable that a diagonal T will work. With

T =
(

t1 0

0 t2

)

we get the equations

T STT =
(

t1 0

0 t2

)(

2 0

0 1

)(

t1 0

0 t2

)

=
(

2t1
2 0

0 t2
2

)

and

T−TOT−1 =
(

1/t1 0

0 1/t2

)(

0.5 0

0 1

)(

1/t1 0

0 1/t2

)

=
(

0.5/t1
2 0

0 1/t2
2

)

which gives

2t1
2 = 0.5/t1

2 [ t1
4 = 1/4 [ t1 = 1/

√
2

t2
2 = 1/t2

2 [ t2
4 = 1 [ t2 = 1

.

(You could also use the direct formula for T in the proof on page 81 in [Glad

& Ljung])

With this T

T =
( 1√

2
0

0 1

)

the gramians become

Sξ =
(

1 0

0 1

)

Oξ =
(

1 0

0 1

)

.
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Solutions 13. Controller Simplification

Hence, a balanced realization is

ξ̇ = Âξ + B̂u

y = Ĉξ + D̂u

where

Â = T AT−1 =
( −1 0

−
√

2 −0.5

)

B̂ = T B =
(

√
2

1

)

Ĉ = CT−1 = (
√

2 1 ) D̂ = D

d. In this case, the Hankel singular values have the same size, therefore either

could be removed. (However, this means that it is probably not a good idea

to do any truncation at all!) If the second state is removed by letting ξ̇2 = 0,

ξ2 can be expressed in terms of ξ1 through 0 = Â21ξ1 + Â22ξ2 + B̂2u. The

reduced realization then becomes

ξ̇1 = ( Â11 − Â12 Â−1
22 Â21)ξ1 + (B̂1 − Â12 Â−1

22 B̂2)u
yr = (Ĉ1 − Ĉ2 Â−1

22 Â21)ξ1 + (D̂ − Ĉ2 Â−1
22 B̂2)u

where for example Â21 is the element in the second row and first column in

Â.
ξ̇1 = −ξ1 +

√
2u

yr = −
√

2ξ1 + 12u

The transfer function is obtained through the Laplace transform

G1(s) = 12− 2

s+ 1

13.3 a. The Matlab command tf(ss(A,B,C,D)) gives

G(s) = 10s2 + 18s+ 5

s2 + 1.5s+ 0.5

b. Plotting the Bode diagram for G(s)−G1(s) through the command bodemag(G-G1)

gives 2 as the maximal error, obtained at large frequencies. The error bound,

twice the sum of the truncated singular values, also gives 2. In this case the

error bound is tight.

c. Truncating both states gives

G2 = D̂ − Ĉ Â−1 B̂ = 10

d. Plotting bodemag(G-Gr) gives 2 as the maximal error, near ω = 1. The error

bound 2(1+ 1) = 4 is conservative.
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Solutions 13. Controller Simplification

13.4 Through partial fractions one can write

2s2 + 2.99s+ 1

s(s+ 1)2 = 1

s
+ s+ 0.99

(s+ 1)2

The Matlab command

[G3bal,sig]=balreal(tf([1 .99],[1 2 1])) gives

si� =
(

0.4950

0.00001

)

so one state can be removed right away.

G3red=modred(G3bal,(sig<0.1)) yields

−2.525 · 10−5s+ 1

s+ 1.01
( 1

s+ 1.01

With the integrator we get the reduced system

1

s
+ 1

s+ 1.01
= 2s+ 1.01

s(s+ 1.01)

The commands balreal and modred can actually be used directly on systems

with an integrator since they do the separation automatically.
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