
FRTN10 Exercise 9. Kalman Filtering, LQG

9.1 Consider the first order unstable system with the dynamics

G(s) = 1

s− 1

and with a state-space representation with additive noise

ẋ(t) = x(t) + u(t) + v1(t)
z(t) = x(t)
y(t) = x(t) + v2(t)
φvi
= Ri

The uncorrelated noise signals vi(t) are white with intensities Ri. We are

about to investigate how the optimal Kalman filter depends on the Ri’s.

a. Show that the optimal Kalman filter only depends on the ratio β = R1/R2.

b. Find the error dynamics, i.e., the dynamics of the estimation error e(t) =
x(t) − x̂(t).

c. How does the error dynamics depend on the ratio β = R1/R2? Interpret the

result for large β (process noise much larger than measurement noise), and

for small β (measurement noise much larger than process noise).

9.2 A Kalman filter should be designed for the second order system

ẋ(t) =
(

0 1

1 0

)

x(t) +
(

1

0

)

u(t) +
(

1

1

)

v1(t)

y(t) = ( 1 0 ) x(t) + v2(t)
φvi
= 1

where vi are uncorrelated white noise with intensity 1.

Design the Kalman filter by

a. solving the algebraic Riccati equation by using care in Matlab.

b. using lqe in Matlab.

9.3 Consider the first-order stable system with dynamics

G(s) = 1

s+ 1

and a state-space representation with additive noise

ẋ(t) = −x(t) + u(t) + v1(t)
z(t) = x(t)
y(t) = x(t) + v2(t)
φvi
= 1
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Exercise 9. Kalman Filtering, LQG

The noise signals vi(t) are uncorrelated. Often, we have load disturbances

acting on the system, hence there is a need for integral action for acceptable

control. Using LQ-techniques in designing a state-feedback controller does

not automatically give integral action. One way to introduce integral action

is to model the disturbance as filtered white noise and use a Kalman filter to

estimate the disturbance.

The load disturbance is then modelled as a signal w that influences y and z

z(t) = x(t) + w(t)
y(t) = x(t) + w(t) + v2(t)

In order to model the static error in z and y, w should have large low-frequency

content. To use a Kalman filter to estimate the error, we need to find a filter

H(s) that generates the signal w from a white noise process n

w = Hn.

For true integral action we want H(s) = 1/s, but with this model the noise

state will be neither controllable nor stable, and we will not be able to design

an LQG controller for the extended system. To get around this problem, we

replace the pure integrator by a first order system

H(s) = 1

s+ δ

for some small δ .

a. Find a state-space realization of the extended system, including the noise

model

ẋe = Aexe + Beue + Nev1e

y = Ce xe + v2

z = Me xe

where v1e =
(

v1

n

)

b. Design the full LQG controller in Matlab using the extended model. Note,

for large penalties on u the extended noise model doesn’t appear to have any

effect. Why?

c. Examine the Bode plot of the controller. How does the (almost) integral

action in the controller change when changing δ and the noise intensity

corresponding to the added state?

d. Will the response to constant load disturbances have a static error?

9.4 Consider control of a DC-motor,

G(s) = 1

s(s+ 1)
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Exercise 9. Kalman Filtering, LQG

White process noise is active on both states with intensity 1 and with input

vector ( 0.1 0.1 )T . There is also noise on the output with intensity 0.1. Let

the states be x1 = y, x2 = ẏ. This gives the following state-space model

ẋ(t) =
(

0 1

0 −1

)

x(t) +
(

0

1

)

u(t) +
(

0.1

0.1

)

v1(t)

y(t) = ( 1 0 ) x(t) + v2(t)

with R1 = 1, R2 = 0.1 and R12 = 0

One wishes to use the motor to drive a system that might be oscillatory at

the frequency 0.5 rad/s, but there is not much knowledge about its properties.

a. How can you change the model such that the LQG controller will have good

robustness at this frequency (a small complementary sensitivity function)?

Derive this extended model and determine the intensity matrices needed to

solve for the Kalman filter gain.

b. Compute the Kalman filter using lqe in Matlab. Plot the transfer function

from y(t) to ŷ(t) = Cx̂(t). Can you see the implication of the noise modelling?

9.5 Consider the task of estimating the states of a double integrator where noise

with intensity 1 affects the input only and we have measurement noise of

intensity 1.

a. Determine the optimal Kalman filter (by hand calculations).

b. What are the Kalman filter poles?
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Solutions 9. Kalman Filtering, LQG

Solutions to Exercise 9. Kalman Filtering, LQG

9.1 a. We have that A = B = C = N = M = 1. The Riccati equation thus reduces

to

2P + R1 −
P2

R2

= 0,

which has the positive semi-definite solution P = R2 + R2

√

1+ R1
R2

. Thus,

the Kalman filter gain is

K = 1

R2

P = 1+
√

1+ R1

R2

= 1+
√

1+ β.

b. The Kalman filter dynamics are given by

˙̂x(t) = Ax̂(t) + Bu(t) + K(y(t) − Cx̂(t))

where y(t) = Cx(t) + v2(t). Using the values A = B = C = N = M = 1 we

have the error dynamics

ė(t) = (A−KC)e(t)−Kv2(t)+v1(t) = −
√

1+ β e(t)−(1+
√

1+ β)v2(t)+v1(t)

c. The position of the Kalman filter pole is −
√

1+ β . We can see that if β →∞,

the pole of the Kalmanfilter → −∞. Hence, the estimation error dynamics

are fast, we believe very much in our measurements. On the other hand, if

β → 0, the Kalman filter pole tends to -1, that is, as fast as the process pole.

Now, we trust the model more than the measurements.

9.2 See Matlab code below.

>> A = [0 1;1 0];

>> C = [1 0];

>> N = [1 1]’;

a. >> % Using care

>> Q = N*N’;

>> R = 1;

>> S = zeros(2,1);

>> E = eye(2);

>> [X,K,G] = care(A’, C’, Q, R, S, E);

>> K1 = X*C’

K1 =

2.4142

2.4142
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Solutions 9. Kalman Filtering, LQG

>> eig(A-K1*C)

ans =

-1.4142

-1.0000

b. >> % Using lqe

>> [K2,P,E] = lqe(A,N,C,1,1,0)

K2 =

2.4142

2.4142

P =

2.4142 2.4142

2.4142 2.4142

E =

-1.4142

-1.0000

>> eig(A-K2*C)

ans =

-1.4142

-1.0000

9.3 a. The noise model has the following state-space realization,

ẋw(t) = − δ xw(t) + n(t)
w(t) =xw(t)

Extending the state-space model of the process with the noise model gives,

ẋe(t) =
(−1 0

0 −δ

)

xe(t) +
(

1

0

)

u(t) +
(

1 0

0 1

)

v1e(t)

y(t) = ( 1 1 ) xe(t) + v2(t)
z(t) = ( 1 1 ) xe(t)

Note here that z(t) contains the noise state xw(t), so that, if we design an

LQG controller we will try to minimize the disturbance state effect also.
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Solutions 9. Kalman Filtering, LQG

b.

˙̂x(t) = Ae x̂(t) + Beu(t) + K(t)(y(t) − Cx̂(t))
K(t) = P(t)CT

e R−1
2

Ṗ(t) = Ae P(t) + PAT
e − K(t)R2 KT(t) + N R1 N

φvi
= 1

u(t) = −Lx̂(t)
L = Q−1

2 BT
e S

0 = AT
e S + S A+ MT Q1 M − SBeQ−1

2 BT S

We are looking for the stationary Kalman filter and therefore solve for Ṗ(t) =
0 as before. Ri are noise intensities and Qi are the weighting matrices for the

LQ-problem.

See Matlab code in (d). Why do we need a small weight on u(t)? Since integral

action requires the control signal magnitude to be large at low frequencies we

have to let the control signal be large, otherwise the low frequency gain will

be limited independent of noise model.

c. If we change the cut-off frequency of the noise filter, we change the cut-

off frequency of the low frequency gain of the controller, this is shown in

Figure 9.1.

If we on the other hand change the noise intensity, we indirectly change the

gain of the noise filter. Hence, we will increase the controller gain for all

frequencies, see Figure 9.2.

d. Response to constant load disturbances will always have a static error since

we do not have infinite gain at low frequencies. That is, we do not have pure

integral action, only approximative.

See below for Matlab code,

B = [1; 0];

C = [1 1];

D = 0;

N = eye(2);

H = [0 0];

% Different values of cut-off frequency of noise filter

% Note that the values in the diagonal of the disturbance

% filter inputintensity matrix [1 0; 0 100] are arbitrary;

% their relation will later be varied

A = [-1 0; 0 -0.1];

sys = ss(A, [B N], C, [D H]);

[Kest,L,P] = kalman(sys, [1 0; 0 100], 1);

P = ss(A,B,C,D);

[K,S,E] = lqry(P,1,0.0000001,0);

R1 = lqgreg(Kest,K);

A = [-1 0; 0 -0.001];
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Solutions 9. Kalman Filtering, LQG
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Figure 9.1 Change of cut-off frequency

sys = ss(A,[B N],C,[D H]);

[Kest,L,P] = kalman(sys,[1 0; 0 100],1);

P = ss(A,B,C,D);

[K,S,E] = lqry(P,1,0.0000001,0);

R2 = lqgreg(Kest,K);

A = [-1 0; 0 -0.00001];

sys = ss(A,[B N],C,[D H]);

[Kest,L,P] = kalman(sys,[1 0; 0 100],1);

P = ss(A,B,C,D);

[K,S,E] = lqry(P,1,0.0000001,0);

R3 = lqgreg(Kest,K);

figure(1)

bode(R1,R2,’--’,R3,’-.’); grid

legend(’R1’,’R2’,’R3’)

title(’Cut-off frequency change’)

% Different values of the disturbance filter input intensity

A = [-1 0; 0 -0.001];

sys = ss(A,[B N],C,[D H]);

[Kest,L,P] = kalman(sys,[1 0; 0 1],1);
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Figure 9.2 Change of noise intensity

P = ss(A,B,C,D);

[K,S,E] = lqry(P,1,0.0000001,0);

R1 = lqgreg(Kest,K);

A = [-1 0;0 -0.001];

sys = ss(A, [B N], C, [D H]);

[Kest, L, P]=kalman(sys, [1 0; 0 10], 1);

P = ss(A, B, C, D);

[K,S,E] = lqry(P,1,0.0000001,0);

R2 = lqgreg(Kest,K);

A = [-1 0; 0 -0.001];

sys = ss(A,[B N],C,[D H]);

[Kest,L,P] = kalman(sys,[1 0; 0 100],1);

P = ss(A,B,C,D);

[K,S,E] = lqry(P,1,0.0000001,0);

R3 = lqgreg(Kest,K);

figure(2)

bode(R1,R2,’--’,R3,’-.’);grid

legend(’R1’,’R2’,’R3’)

title(’Intensity change’)
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Solutions 9. Kalman Filtering, LQG

9.4 a. To get a small complementary sensitivity at the oscillation frequency, we need

the LQG controller to have a low gain at this frequency; effectively ignoring

corresponding oscillations in the output y. This can be achieved by modelling

the influence of the oscillatory system as a disturbance w on y according to

ẋ = Ax+ Bu+ Nv1

y = Cx+ w+ v2

To model the oscillatory characteristics of w, we can consider w to be generated

by passing white noise n through a second-order filter with a resonance peak

at ω0 = 0.5 rad/s and a zero at s = 0, with transfer function

H(s) = Kvs

s2 + 2ζω0s+ω2
0

.

The zero at s = 0 is placed there to avoid an increased gain at low frequencies,

which would otherwise follow. It is not necessary unless it is important to avoid

this phenomenon and the exercise can be solved without it, which will then

yield a slightly different solution to the one below.

The parameter ζ determines the magnitude of the resonance peak, and we

can choose e.g. ζ = 0.02.

In state-space form, the filter is given by

ẋv(t) =
(

−0.02 −0.25

1 0

)

xv(t) +
(

1

0

)

n(t)

w(t) = ( Kv 0 ) xv(t)

Extend the original state-space form with the noise model

ẋ(t) =











0 1 0 0

0 −1 0 0

0 0 −0.02 −0.25

0 0 1 0











x(t) +











0

1

0

0











u(t) +











0.1 0

0.1 0

0 1

0 0











(

v1(t)
n(t)

)

y(t) = ( 1 0 Kv 0 ) x(t) + v2(t)
z(t) = ( 1 0 0 0 ) x(t)

If this model is used to compute K in the Kalman filter, for an appropriate

value of Kv, we get supression of the resonance frequency. The intensity of

the added noise input can e.g. be set to 1 since we can control the amplitude

of the disturbance by changing Kv. Thus, we have the intensity matrices

R1 = diag(1, 1), R2 = 0.1.

Note that z(t) do not depend on the xv-states, i.e., if we are about to design

an LQG controller, we have no weight on the added noise. The added noise is

only used for specifying at what frequencies our measurements are uncertain.

b. See figure 9.3 for the Bode plot of the transfer function from measurement

y(t) to estimated output ŷ(t) using Kv = 1. We see a large attenuation of

frequencies at ω = 0.5 rad/s.

Matlab code
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Solutions 9. Kalman Filtering, LQG
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Figure 9.3 Attenuation of oscillative disturbance

A = [0 1 0 0; 0 -1 0 0; 0 0 -0.02 -0.2501; 0 0 1 0];

B = [0 1 0 0]’

C = [1 0 1 0];

N = [0.1 0; 0.1 0; 0 1; 0 0];

[K,P,E] = lqe(A,N,C,blkdiag(1,1),0.1);

Cnom = [1 0 0 0];

tf(ss(A-K*C,K,Cnom,0))

bode(ss(A-K*C,K,Cnom,0),{0.1,100})

grid

9.5 a. We have the state-space representation

ẋ(t) =
(

0 1

0 0

)

x(t) +
(

0

1

)

u(t) +
(

0

1

)

v1(t)

y(t) = ( 1 0 ) + v2(t)

(If a different state-space representation is chosen, the solution will look

different although the steps will be similar.)

The Riccati-equation

AP + PAT + N R1 NT − PCT R−1
2 C P = 0

is solved by letting P =
(

p1 p2

p2 p3

)

. The equations become,
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Solutions 9. Kalman Filtering, LQG

2p2 − p2
1 = 0

p3 − p1p2 = 0

1− p2
2 = 0

The solution is thus

P =
(

√
2 1

1
√

2

)

with the optimal gain

K = PCT = (
√

2 1 )T

b. The poles of the Kalman filter are the eigenvalues of A− KC,

A− KC =
(−
√

2 1

−1 0

)

with the eigenvalues λ j =
1√
2
(−1± i).
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