
FRTN10 Exercise 8. Linear-Quadratic Control

8.1 Consider the first-order unstable process

ẋ(t) = ax(t) + u(t), a > 0

y(t) = x(t)

where the state is measured without any noise.

a. Design, analytically, an LQ controller that minimizes the criterion

J =
∞

∫

0

(

x2(t) + Ru2(t)
)

dt.

We want a stationary gain of 1 from the reference to the output. Design

therefore a feedforward gain Lr such that the control signal is given by

u(t) = −Lx(t) + Lrr(t),

and achieves the performance specification.

b. Do the design for different R using Matlab when assuming a = 1, and plot

the position of the closed-loop pole as a function of R. Explain how the speed

of the system depends on R.

8.2 Consider the second-order system

ẋ(t) =
(

1 0

1 0

)

x(t) +
(

1

0

)

u(t)

y(t) = ( 1 1 ) x(t)

Design an LQ controller, with equal weight on output and control signal, by

1. Using lqry in Matlab. Simulate the closed-loop system from the initial

condition x(0) = ( 1 1 )T .

2. Solving the algebraic Riccati equation in Matlab using care.

8.3 Consider a process

ẋ(t) =
(−1 0

0 −2

)

x(t) +
(

3

2

)

u(t)

Show that

u(t) = − ( 2 −3 ) x(t)
can not be an optimal state feedback designed using linear quadratic theory

with the cost function

J =
∞

∫

0

(

xT(t)Q1 x(t) + Q2u2(t)
)

dt

where Q1 and Q2 are positive definite matrices.

Hint: Look at the Nyquist plot of the loop transfer function.
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8.4 Consider the system

ẋ =








1 −1

2 4








x+









−4

8








u

y =


 1 1



 x

One wishes to minimize the criterion

V(T) =
∫T

0

(

xT(t)Q1 x(t) + Q2u2(t)
)

dt

Is it possible to find positive definite weights Q1 and Q2 such that the cost

function V(T) < ∞ as T →∞?

8.5 We would like to control the following process with linear quadratic optimal

control:

ẋ(t) =








1 3

4 8








x(t) +









1

0.1








u(t)

z(t) =


 0 1



 x(t)

The weight on x1(t)2 should be 1, and the weight on x2(t)2 should be 2. On

the control signal u(t)2 we will try different values: R = 0.01, 10, 1000.

a. Determine the cost function for the three different cases.

b. Assume that we want to add reference following, i.e. u(t) = Lrr(t) − Lx(t).
In Matlab, calculate the three different resulting controllers, calculate the

resulting closed-loop poles and do step responses from r to x2 and from r to

u. Make sure that there is no static error!

8.6 Consider the double integrator

ẋ(t) =








0 1

0 0








x(t) +









0

1








u(t)

z(t) =


 1 0



 x(t)

a. Design by hand an LQ controller u(t) = −Lx(t) that minimizes the criterion

J =
∫∞

0

xT(t)Q1 x(t) + Q2u2(t)dt

with

Q1 =








1 0

0 0








, Q2 = 0.1

Then add reference following so that u(t) = −Lx(t) + Lrr(t). Calculate Lr so

that the stationary gain from reference r(t) to output z(t) is equal to 1.
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Figure 8.1 Step responses for LQ-control of the system in Problem 8.6 with different weights

on Q1, Q2.

b. What measurements are needed by the controller?

c. The four plots in Figure 8.1 show the step responses of the closed-loop system

for four different combinations of weights, Q1, Q2. Pair the combinations of

weights given below with the step responses in Figure 8.1.

1.

Q1 =








1 0

0 0








, Q2 = 0.01

2.

Q1 =








1 0

0 0








, Q2 = 1

3.

Q1 =








1 0

0 1








, Q2 = 1

4.

Q1 =








1 0

0 0








, Q2 = 1000

8.7 (*) Consider the double integrator

ξ̈ (t) = u(t).
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with state-space representation

ẋ =








0 1

0 0








x+









0

1








u

y =








1 0

0 1








x

where x = (ξ (t), ξ̇ (t)). You would like to design a controller using the criterion

∫∞

0

(ξ 2(t) + η · u2(t)) dt

for some η > 0.

a. Show that S =








s1 s2

s2 s3








with

s1 =
√

2 · η1/4

s2 = η1/2

s3 =
√

2 · η3/4

solves the Riccati equation.

b. What are the closed-loop poles of the system when using this optimal state

feedback? What happens with the control signal if η is reduced?
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Solutions to Exercise 8. Linear-Quadratic Control

8.1 a. The Riccati equation becomes (A = a, B = 1, M = 1, Q1 = 1, Q2 = R)

2Sa+ 1− S R−1 S = 0

This gives

S = aR +
√

(aR)2 + R

(S = aR −
√

(aR)2 + R is not a solution since S has to be positive definite.)

Thus the optimal control is given by

L = S

R
= a+

√

a2 + 1

R
.

The closed-loop system is hence, using u(t) = −Lx(t) + Lrr(t)

ẋ(t) = −
√

a2 + 1

R
x(t) + Lrr(t)

y(t) = x(t)

Lr has to be chosen so that we get a stationary gain of 1 from the reference

to the output, i.e. Gr→y(0) = C(−A+ BL)−1 BLr + D = 1.

We get Lr = (L − a) =
√

a2 + 1

R
.

b. See Matlab code below and Figure 8.1. Conclusion: Less weight on u gives a

faster system since we are allowed to move the control signal more, and vice

versa.

A = 1;

B = 1;

C = 1;

P = ss(A,B,C,0);

Q = 1;

Rvec = 0.001:0.001:0.5;

Evec = zeros(size(Rvec));

for i = 1:length(Rvec)

R = Rvec(i);

[L,S,E] = lqr(P,Q,R);

Evec(i) = E;

end

plot(Rvec, Evec)

xlabel(’Control signal weight’)

ylabel(’Closed-loop pole’)

grid
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Figure 8.1 Control signal weight versus closed-loop pole

8.2 See Figure 8.2 and Matlab code below

A = [1 0; 1 0];

B = [1 0]’;

C = [1 1];

Q = 1;

R = 1;

% using lqry

sys = ss(A,B,C,0);

[L2,S,E] = lqry(sys,Q,R)

eig(A-B*L2)

% simulate the system with initial conditions

sys = ss(A-B*L2,B,C,0);

x0 = [1 1];

initial(sys,x0); grid

% Solving the Riccati equation

Qr = C’*Q*C;

Rr = R;

S = zeros(2,1);

E = eye(2);

[X,K,G] = care(A,B,Qr,Rr,S,E);

L1 = Rr\B’*X

eig(A-B*L1)
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Figure 8.2 Response to initial conditions

8.3 The loop gain is

L(sI − A)−1B = 6

(s+ 1)(s+ 2)
Thus, as seen in figure 8.3, the Nyquist curve will approach the origin with

a phase of −180○. LQ-optimal loop gain always has an asympototic phase of

−90○. Therefore, it can not be an LQ-optimal state feed back vector.

8.4 The system has two unstable poles in 2 and 3. If the cost function should be

less than ∞ then the system must be stabilizable, i.e. all unstable poles must

be controllable (due to Q1 > 0). The controllability matrix is given by

Wc = (B AB) =
(−4 −12

8 24

)

which is a rank 1 matrix. Thus, only one of the modes is controllable meaning

that there is an uncontrollable, unstable mode, and hence, we can not make

the cost function less than ∞.

8.5 a. The cost function is J =
∫∞

0

xT(t)
(

1 0

0 2

)

x(t)+uT(t)Ru(t)dt, R = 0.01, 10, 1000.

b. See Figure 8.4 for step responses, and Matlab code below.

A = [1 3; 4 8]; B = [1; 0.1]; M = [0 1];

P = ss(A,B,M,0);
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Figure 8.3 Nyquist plot.

Q1 = [1 0; 0 2]; Q2_vector = [0.01 10 100];

for i=1:length(Q2_vector)

[L,S,E] = lqr(P,Q1,Q2_vector(i));

% Calculating Lr (static gain to output must be 1)

Lr = 1/(M/(B*L-A)*B);

% Calculating the control signal:

to_control_signal = Lr-L*ss(A-B*L,B*Lr,eye(2),0);

% Calculating the output signal:

to_output_signal = ss(A-B*L,B*Lr,M,0);

% Plotting step responses

figure(11)

subplot(3,2,i*2-1)

step(to_control_signal)

axis([0 10 -Inf Inf])

title([’Control signal, Q_2=’ num2str(Q2_vector(i))])

subplot(3,2,i*2)

step(to_output_signal)

axis([0 10 -Inf Inf])

title([’Output signal, Q_2=’ num2str(Q2_vector(i))])

poles{i} = E;

end

poles{:}
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Figure 8.4 Step responses for different weight on control signal.

8.6 a. Put

S =
(

s1 s2

s2 s3

)

and solve the Ricatti equation

Q1 + AT S + S A− SBQ−1
2 BT S = 0.

This gives

(

0 0

s1 s2

)

+
(

0 s1

0 s2

)

+
(

1 0

0 0

)

− 1

0.1
·

(

s2
2 s2s3

s2s3 s2
3

)

= 0,

with the solution

s1 =
√

2 · 10−1/4,

s2 = 10−1/2,

s3 =
√

2 · 10−3/4.

The optimal controller is given by

L = Q−1
2 BT S = (

√
10

√
2 · 101/4).
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To get y = r in stationarity:

1 = G(0) = M(−A+ BL)−1 BLr [ Lr =
√

10.

b. Both x1 and x2 must be measured, e.g.

C =
(

1 0

0 1

)

.

c. 3. is the only case with a cost on the velocity x2. This makes the controller

try to avoid rapid variations in x1, so we get 3. − D), the only step response

without overshoot. The weight, Q2, on the control signal determines the speed

of the system. A low weight on the control signal gives a faster system since

we are allowed to use more control signal. This gives 1.−C), 2.− A), 4.− B).

8.7 a. Weighting matrices Q1 =
(

1 0

0 0

)

och Q2 = η. The Riccati equation to be

solved with respect to S is

AT S + S A+ Q1 − SBQ−1
2 BT S = 0

Put

S =
(

s1 s2

s2 s3

)

,

which gives

(

0 0

s1 s2

)

+
(

0 s1

0 s2

)

+
(

1 0

0 0

)

− 1

η
·

(

s2
2 s2s3

s2s3 s2
3

)

= 0

We see, by insertion, that

s1 =
√

2 · η1/4

s2 = η1/2

s3 =
√

2 · η3/4

solves the Riccati equation.

b. The optimal state feedback is

L = Q−1
2 BT S = 1

η
· ( 0 1 )

( √
2η1/4 η1/2

η1/2 √
2 · η−3/4

)

= 1

η
· (η1/2 √

2η3/4) = (η−1/2 √
2 · η−1/4)

The poles are the eigenvalues to A−BL. Put µ = η−1/4 [ L = ( µ2
√

2 · µ ) .

This gives

0 = det

(

s −1

µ2 s+
√

2 · µ

)

= s2 +
√

2µs+ µ2,

that is

s = − µ√
2
±

√

µ2

2
− µ2 = − µ√

2
± i ·

µ√
2
=
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= − µ√
2
· (1± i) = − 1√

2 · η1/4 · (1± i)

If η is reduced, the distance between the poles and the origin will increase.

This means that u(t) will increase. Check the criterion!
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