FRTN10 Exercise 8. Linear-Quadratic Control

8.1

8.2

8.3

Consider the first-order unstable process

%(t) = ax(t) + u(t), a>0

y(t) = x(2)

where the state is measured without any noise.

. Design, analytically, an LQ controller that minimizes the criterion

J = | («*(t) + Ru®(¢)) dt.
e

We want a stationary gain of 1 from the reference to the output. Design
therefore a feedforward gain L, such that the control signal is given by

u(t) = —Lx(¢) + L,r(2),

and achieves the performance specification.

. Do the design for different R using Matlab when assuming a = 1, and plot

the position of the closed-loop pole as a function of R. Explain how the speed
of the system depends on R.

Consider the second-order system

x(t):(i g)x(t)+((1)>u(t)
y(8) = (1 1)x(2)

Design an LQ controller, with equal weight on output and control signal, by

1. Using lqry in Matlab. Simulate the closed-loop system from the initial
condition x(0) = (1 1)7.

2. Solving the algebraic Riccati equation in Matlab using care.

i(t) = (‘01 _02>x(t) + (2)u(t)

u(t) =—(2 -3)x(t)
can not be an optimal state feedback designed using linear quadratic theory
with the cost function

Consider a process
Show that

T = [ (0@ + @i (0)) s

where @1 and @9 are positive definite matrices.

Hint: Look at the Nyquist plot of the loop transfer function.



Exercise 8. Linear-Quadratic Control

8.4

8.5

a.

b.

8.6

Consider the system

(1 1 4 —4

X = o 4 x g u

y = ( 1 1) x
One wishes to minimize the criterion

T
V(T) = f (+" ()Qux(t) + @u(1)) dt
0

Is it possible to find positive definite weights @1 and @2 such that the cost
function V(T) < co as T — o0?

We would like to control the following process with linear quadratic optimal
control:

1 3 1
¢(¢ ¢ t
0= [, o) =0+ (] w0
2(t) = ( 0 1 ] 0
The weight on x;(#)? should be 1, and the weight on x2(#)? should be 2. On
the control signal u(t)? we will try different values: R = 0.01, 10, 1000.
Determine the cost function for the three different cases.

Assume that we want to add reference following, i.e. u(t) = L,r(¢) — Lx(¢).
In Matlab, calculate the three different resulting controllers, calculate the
resulting closed-loop poles and do step responses from r to xg and from r to
u. Make sure that there is no static error!

Consider the double integrator

0 1 0
e(t) = t t
0= [ o) =0+ () e
2(t) = [ 1 o] x(?)
Design by hand an LQ controller u(¢) = —Lx(¢) that minimizes the criterion
J = f () Qux(t) + @uud(t)dt
0

with
Q_[l 0] Q= 0.1
1= 0 0 > 2 — U

Then add reference following so that u(t) = —Lx(¢) + L,r(¢). Calculate L, so
that the stationary gain from reference r(t) to output z(¢) is equal to 1.
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Figure 8.1 Step responses for LQ-control of the system in Problem [8.6] with different weights
on @1, Q.

b. What measurements are needed by the controller?

c. The four plots in Figure 8.1l show the step responses of the closed-loop system
for four different combinations of weights, @1, @2. Pair the combinations of
weights given below with the step responses in Figure [8.1

[t =0.01
Ql_[o 0]) QQ_ .
2.
(10 _,
Ql_[o O]’ Q2_
3.
(10 _
Ql_[o 1]’ Q2_
4.

8.7 (*) Consider the double integrator

E(t) = u(2).
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with state-space representation

[ o)+ (1)

(10
Y lo 1) "

where x = (£(¢), £(t)). You would like to design a controller using the criterion

[ CE0) 1 n-u2(0) de

for some 1 > 0.

S1 S9
a. Show that S = [ ] with
S9 83
S1 = \/§'U1/4
o =n'/?
s3=V2- -4

solves the Riccati equation.

b. What are the closed-loop poles of the system when using this optimal state
feedback? What happens with the control signal if 5 is reduced?
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Solutions to Exercise 8. Linear-Quadratic Control

8.1 a. The Riccati equation becomes (A=a¢, B=1, M =1, Q1 =1, Q2 =R)

28a+1—SR'S=0

S=aR+/(aR)*+R

(S = aR — \/(aR)? + R is not a solution since S has to be positive definite.)

Thus the optimal control is given by

1
L=%=a+\/a2+ﬁ.

The closed-loop system is hence, using u(t) = —Lx(¢) + L,r(t)

() = —Ja? + %x(t) + Lor(d)

y(t) = x(2)

L, has to be chosen so that we get a stationary gain of 1 from the reference
to the output, i.e. G,,,(0) = C(~A+ BL)"'BL,+ D = 1.

1
WegetL,z(L—a):\/a2+E.

b. See Matlab code below and Figure [8.1l Conclusion: Less weight on u gives a
faster system since we are allowed to move the control signal more, and vice

This gives

versa.
A=1;
B =1;
Cc=1;
P = ss(A,B,C,0);
Q=1
Rvec = 0.001:0.001:0.5;
Evec = zeros(size(Rvec));
for i = 1:length(Rvec)
R = Rvec(i);
(L,S,E] = 1qr(P,Q,R);
Evec(i) = E;
end

plot(Rvec, Evec)

xlabel (’Control signal weight’)
ylabel(’Closed-loop pole’)

grid
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Figure 8.1 Control signal weight versus closed-loop pole

8.2 See Figure [8.2] and Matlab code below

A=1[10;10];
B=1[10]";
C=111];
Q=1

R =1;

% using lqry

sys = ss(A,B,C,0);
[L2,S,E] = lgry(sys,Q,R)
eig(A-B*L2)

% simulate the system with initial conditions
sys = ss(A-B*L2,B,C,0);

x0 = [1 1];

initial(sys,x0); grid

% Solving the Riccati equation

Qr = C’*Q*C;

Rr = R;

S = zeros(2,1);
E = eye(2);

[X,K,G] = care(A,B,Qr,Rr,S,E);
L1 = Rr\B’*X
eig(A-B*L1)

0.5



8.3

8.4

8.5
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Response to Initial Conditions
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Figure 8.2 Response to initial conditions

The loop gain is
6

(s+1)(s+2)
Thus, as seen in figure [8.3] the Nyquist curve will approach the origin with

a phase of —180°. LQ-optimal loop gain always has an asympototic phase of
—90°. Therefore, it can not be an LQ-optimal state feed back vector.

L(sI —A)™'B=

The system has two unstable poles in 2 and 3. If the cost function should be
less than co then the system must be stabilizable, i.e. all unstable poles must
be controllable (due to @1 > 0). The controllability matrix is given by

W, = (B AB):(_: _222>

which is a rank 1 matrix. Thus, only one of the modes is controllable meaning
that there is an uncontrollable, unstable mode, and hence, we can not make
the cost function less than oco.

o0 10
. The cost function is J = f «T(t) (0 9 ) x(¢)+u” (t)Ru(t)dt, R = 0.01, 10, 1000.
0

. See Figure for step responses, and Matlab code below.

A
P

[13; 48]; B=1[1; 0.1]; M= [0 1];
ss(A,B,M,0);
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Figure 8.3 Nyquist plot.

= [1 0; 0 2]; Q2_vector = [0.01 10 100];

for i=1:1length(Q2_vector)

end
pol

[L,S,E] = 1qr(P,Ql1,Q2_vector(i));

% Calculating Lr (static gain to output must be 1)
Lr = 1/(M/(B*L-A)*B);

% Calculating the control signal:
to_control_signal = Lr-L*ss(A-B*L,B*Lr,eye(2),0);

% Calculating the output signal:
to_output_signal = ss(A-B*L,B*Lr,M,0);

% Plotting step responses

figure(11)

subplot(3,2,i%*2-1)

step(to_control_signal)

axis([0® 10 -Inf Inf])

title([’Control signal, Q_2=" num2str(Q2_vector(i))1)
subplot(3,2,i*2)

step(to_output_signal)

axis([0® 10 -Inf Inf])

title([’Output signal, Q_2=’ num2str(Q2_vector(i))])
poles{i} = E;

es{:}



Solutions 8. Linear-Quadratic Control

Control signal, Q2=0'01 Output signal, Q2=O.01
1
o 20 ®
e} e}
2 2
g S 05
< 0 <
0 10 0 10
ngec nds) ime ‘sec néi
Con ro sgna ,=10 Ou putsgn =10
1
() 1 ()
el e
=2 2
g o g 05
< <
-1
0
0 10 0 5 10
Ti
Contial® %nsﬁo’&?s 100 OutpUt Signa O&ds 100
1 1
() ()
e} e}
= =
g o g 05
< <
-1 0
0 5 10 0 5 10
Time (seconds) Time (seconds)
Figure 8.4 Step responses for different weight on control signal.
8.6 a. Put

and solve the Ricatti equation

Q1+ ATS + SA— SBQR;'BTS =

This gives

0 0 0 s 10 1 2
T O o (S PRy ol
S1 S2 0 S9 00 0.1 S2S83 S3
with the solution
1= V210714,
2 =107/

s3=1/2-107%/4,
The optimal controller is given by

L=@3'BTS = (V10 V2-10'%)
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To get ¥ = r in stationarity:
1=G(0)=M(—A+BL)'BL, = L,=+10.

b. Both x; and x9 must be measured, e.g.

(o 1)

c. 3. is the only case with a cost on the velocity x9. This makes the controller
try to avoid rapid variations in x, so we get 3. — D), the only step response
without overshoot. The weight, @2, on the control signal determines the speed
of the system. A low weight on the control signal gives a faster system since
we are allowed to use more control signal. This gives 1. — C), 2. — A), 4. — B).

10
8.7 a. Weighting matrices @ = ( 0 0 ) och @9 = n. The Riccati equation to be

solved with respect to S is

ATS + SA+ @, — SBQ;'BTS =0

which gives

0 0 N 0 s1 N 10\ 1 [ s 3223 —o
S1 S39 0 s9 0 O n $283  S3

We see, by insertion, that

81=\/§'771/4
sg = n'/?
S3=\/§'773/4

solves the Riccati equation.

b. The optimal state feedback is

1/4 1/2
L-gE’s=1.0 1) V¥ !
n nt2 /2.3

1
= ; . (,71/2 \/§U3/4) _ (’7_1/2 \f2.,7—1/4)

The poles are the eigenvalues to A—BL.Put u =~ %/* = L= (u?2 V2-u).

This gives
s -1
0 = det =% +V2us + 12,
(ﬂz S+\/§'ﬂ)
that is
2
2 2 o.M
s=——_ 4/ —u2=— 4. =
e Ve TE T T T A

10
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7 RS S
5 0D == (1)

If n is reduced, the distance between the poles and the origin will increase.
This means that u(¢) will increase. Check the criterion!

11
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