FRTN10 Exercise 7. Controller Structures, Preparations
for Lab 2

Note: Exercises 7.1-7.3 serve as preparation for Laboratory Excercise 2.

7.1 a. Give the definition of RGA for a complex-valued, not necessarily square, matrix
A. How do you apply it to a process G(s) and what information can be
extracted in an automatic control perspective?

b. Let 1 10
s+2 s+1
G(s) =
1 5
s+5 s+3

Compute RGA(G(0)).

c. What input-output pairing would you recommend in a decentralised control
structure?

7.2 Consider the MIMO process

1
0 0
s+1
.1 1
P(s) = :
s+10 s+ 10
0.1 1
0
s+1 s+1

Compute the relative gain array, RGA, of P(0) and suggest an input-output
pairing for the system based on this.

Hint: The inverse of P(s) is given by

s+1 0 0
P(s)'=]-01(s+1) 0 s+1
0.01(s+1) s+10 —0.1(s+1)

7.3 Figure [7.1l shows the quadruple-tank process that will be used in Lab 2. The
goal is to control the levels in the lower tanks (y1, y2) using the pumps (u1,
ug). For each tank i = 1... 4, mass balance and Torricelli’s law give that

Ai% =—a;\/29h; + qin (7.1)

where A, is the cross-section of the tank, A; is the water level, a; is the
cross-section of the outlet hole, g is the acceleration of gravity, and ¢, is the
inflow to the tank. The non-linear equation (ZI) can be linearized around a
stationary point (h?, q?n), giving the linear equation

dAhL’ g
Ai = —Q; Ahz Agin 7.2
7 ai,/ 210 + Aq (7.2)
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Figure 7.1 The quadruple-tank process.

where Ah; = h; — kY, and Aqi, = qin — q°, denote deviations around the
stationary point.

The flows from the pumps are divided according to two parameters 1, 2 €
(0, 1). The flow to Tank 1 is p1k1u; and the flow to Tank 4 is (1 — y1)kjug.
Symmetrically, the flow to Tank 2 is yokous and the flow to Tank 3 is (1 —
¥o)kaus.

a. Let Au; = u; — u?, Ah; = h;— h?, and Ay; = y; —y?. Verify that the linearized
dynamics of the complete quadruple-tank system are given by

dAhy ar [ g as [ g y1k1
=L [T Any+ 28 [T ARy 4 BEL Ay
di A\ 2nd T T A 2nd T T A T

dAhs ay [ g as [ g reke
=2 | = Ahg+ -2 |2 Ahg+ 222 Au
dt A\ 2ng TP T Ap\and T T A, T

dAhs as [ g (1 —92)ks
. B (RN P S L2
at T As\and T Ay A

dAhy ay [ g (1—91)k:
Y VR €0 L2
a T A aal MMt Ta, A

Introduce the input vector, u, output vector, y, and state vector, x, as

Ahq
[ Au1 ] Ahz [ Ayl ]
u= , x= , y= .
Aug Ahg Ays
Ahy
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Verify that the linearized system can be written in state-space form as

k
_i As 0 Yik1 0 )
Tl A1T3 Al
0o -+ o M ek
@ _ Ty ATy x + Ay u
dt 0 0 _i 0 (1 — Q/Q)kz ’
T3 A3
1 _
0 0 0 _ (1 71)k1 0
\ Ty / Ay /
ke 0 0 O ]
y = X,
L0 k. 0 O
A; |2h0
where T, = = L and k., is a measurement constant.
a;

. Show that the transfer matrix from u to y is given by

7ic ke (1—p)a
1+sTy k1 (1—|—ST1)(1—|—8T3)
P(s) =
ki (1 —n)ee 2C2
ko (14sT2)(1+ sTy) 14Ty
where c1 = lelkc/Al and Cg = Tgkzkc/Az.
Hint: Use the fact that
1
00 _i 0
1 a ae
a 0 b 0 1 d
ocoa|l |%¢ °
0 0 e O 0 0 1 0
00 0 f € 1
0 0 0 -
f

. The zeros are given by the equation

cie2(me(1+sT3)(1+sTy) — (1 — 1) (1 —92))

det P(s) = (14 sT1)(1 +sT2)(1 +sT3)(1 +sTy) =0

which is simplified to

1— 1—
)_( r)d=9) _
Y172
Show that the system is minimum phase (i.e., that both zeros are stable) if

1 < 71+ 92 < 2, and that the system is non-minimum phase (i.e., that at least
one zero is unstable) if 0 < 91 + 75 < 1. Remember that 34, 32 > 0.

(1 + ST3)(1 + ST4

Hint: A second-order polynomial has all of its roots in the left half plane if
and only if all coefficients have the same sign.

In the lab, we will first study the case ;1 = 9% =~ 0.7, and then the case
1 = p2 ~ 0.3. In which case will the process be more difficult to control?
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d. Show that the RGA for P(0) is given by
[ A 1-4 ]
1-4 A

Based on this RGA matrix, suggest an input-output pairing in the two cases
v1 =179 ~ 0.7 and 91 = y» ~ 0.3.

where A = y192/(31 + 92 — 1).

74 Consider the following multivariable system

1 —2

<y1> 10s+1 2s+1 <u1>
Y2 B 1 s—1 uz )

10s+1 2s+1

a. By using RGA at stationarity, decide the input-output pairing that should be
used in a decentralized control structure.

b. Assume that we want to use decentralized control, that is, we want to use a
controller that can be described by
P = (0 0,

0 F 292 (.S‘)

Also, we want the control loops to be decoupled in stationarity. Give the
structure of such a controller F(s) expressed in F%28(s) that is capable to do
so. Hint: Use a suitable decoupling matrix.

7.5 (*) In this exercise we will try to design controllers for a 2 x 2-process, that is,
a process that has 2 inputs and 2 outputs. The process is described by the
transfer function matrix

4 3
s+1 3s+1

G(s) = 1 9
3s+1 s4+0.5

Design two different decentralized controllers for the process.

1. Decentralized control, using the RGA of the process.

2. Decentralized control, using decoupling with respect to stationarity

In both cases, use ordinary PI controllers. Use the step responses to evaluate
the performance of the loop.
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Solutions to Exercise 7. Controller Structures,
Preparations for Lab 2

Note: Exercises 7.1-7.3 serve as preparation for Laboratory Excercise 2.

7.1 a. The relative gain array for a complex-valued matrix is given by
RGA (G) = G.*(GNT

where T denotes the pseudo-inverse of G, and . * denotes element wise mul-
tiplication. For a process G(s) the RGA is usually computed for the DC-gain
(w = 0) and the cut-off frequency (w = w,). By inspecting the elements in the
RGA-matrix, we can often decide what output should be controlled with what
input. We should choose a pairing that gives the diagonal elements close to 1
and avoid pairings that give negative diagonal elements.

5 12
77
RGA(G(0)) = G(0).* G~T(0) = ( )
c. Since we should avoid negative diagonal elements and keep the diagonal

elements close to 1, we should choose the pairing y; <> ug and yg < uj.

7.2 We have

(10 0
P(0)=| 0 001 0.1
01 1 0
and
1 0 0
PO*=|-01 0 1
0.01 10 —0.1

1 00

RGA(P(0)) = P(0).* (P(O)™H)T=]0 0 1
0 10

The RGA suggests that we should control output 1 with input 1, output 2

with input 3, and output 3 with input 2.

7.3 a. We see from the flow equation

7 a 30 + Aq (7.1)

12

that the outflow from tank i is

g
Qout = Qi | 271? Ah;.
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The inflows into the tanks are found as the sum of the outflow from the tank
above and the flow from the pumps into the respective tanks. Writing down
equation (ZI) for each of the four tanks now gives the dynamics.

Substituting the time constants 7; into the dynamics, and arranging them
into matrix form then gives the state-space form.

b. The transfer matrix is given by

P(s)=C(sI—A)'B=

As -1/ k1
il 0 — 0 0
s+ T1 A1T3 Al
Ay Yok
il — 0
_ [ kc 0 00 ] 0 s+ T2 0 A2T4 A2
Lo &k 00 (1—2)k:
¢ 0 — 0 0 —_— =
0 s+ T, A,
1— ?’l)kl
0 0 0 S+ (
T4 A4 0
ne ky  (I—m)a
1+ST1 kl (1+ST1)(1+ST3)
ﬁ . (1 — 71)02 YeC2
kz (1 +ST2)(1 +ST4) 1+ST2

c. The zeros are given by the equation

A-n)A-2) _,

T3T482 + (T3 + T4)S +1-—
7172

The two first coefficients are always positive, since T3, T4 > 0. The last coeffi-
cient is positive (and both zeros are thus stable) iff

(1=91)(1—9) <1
Y12

< ;/1-|-’}/2>1

In the case 71 = 9% = 0.7 we get a minimum-phase system which should
be easier to control than the non-minimum-phase system we get in the case

?/1 = ’}/2 = 03
d. We have k
711 f(l — 72)C1
PO)= |, 1
kfl(l — 71)c2 2C2
2
and
k
22 — (1= p)a
-1 1 kl
P(0)™ =
cic2(y1 + 92— 1) _ﬁ(l — 71)ce yic1
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RGA(P(0)) = P(0).* (P(0)™H)T =

B 1 [ Y1C1)2C2 —(1—=)e1(1 —p1)ce ]
cica(1+ 72 —1) L —(1—92)c1(1— 1) Y2C2y1C1
7172 1— 7192
| n+r-1 n+tr-1| _( 4 1-4
= 7172 Y172 “l1=-12 2

ot e—1 n+y—1

In the case y; = 92 = 0.7 we get

RGA(P(0)) = [ 1.225 —0.225]

—0.225 1.225

The RGA suggests we should control output 1 with input 1 and output 2 with
input 2.

In the case ;1 = 95 = 0.3 we get

RGA(P(0)) = [‘0-225 1.225 ]

1.225 —0.225

The RGA suggests that in this case we should control output 1 with input 2
and output 2 with input 1.

7.4 a. We compute the RGA for stationarity, i.e. s = 0.

s—1 2
RGAGE) = (77 )
s+1

“w »

S

-

gives

RGA(G(0)) = <_21 _21 )

Since you should avoid pairing that gives negative diagonal elements we
choose y1 <> ug and yg < uj.

“0=(; )

Using a decoupled controller structure with W; = G=1(0) and Wy = I we get
a decoupled system in stationarity. (See Glad&Ljung ch. 8.3.) The controller
is

—Fn(s) 2F22(S) )

—Fll(s) Fzz(s) '

b. We have that

F(s) = Wi FY28(s) W, = (
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Figure 7.1 Decentralized control

Decentralized control. First we calculate the RGA of the process,

1.2308 —0.2308
—0.2308 1.2308 )

RGA(G(0)) = G(0).x GT(0) = (

We see that we should choose y; <> u1 and ys <> us. A resonable tun-
ing, either by pole placement or hand tuning, gives PI controllers with

parameters close to

See figure [7.1] for step responses.
. Decoupled control. The inverse of the static gain matrix is given by

co=(3)]

Thus, for decoupling, we use W; = G~1(0) and Wy = I. Hand-tuning of
the PI controllers gives

(40(1 + 5£) 0 )
0 20(1 + %)/

See figure [7.2] for step responses.
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Decoupled design
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Figure 7.2 Decoupled control
close all
clear all
s = tf(’s’);

G = [4/(s+1) 3/(3*s+1); 1/(3*s+1) 2/(s+0.5)];

%Decentralized control

RGA = dcgain(G).*(inv(dcgain(G)))’

F = [2%(1+1/(0.5%s)) 0;0 2*(1+1/(0.5*s))];
figure(1)

step(feedback (G*F, eye(2)),5)
title(’Decentralized control’);grid

% Decoupled design

Go= dcgain(G)

F = [40*(1+1/(0.5%s)) 0;0 20*(1+1/(0.8%s))];
figure(2);

step(feedback(G*inv(Go) *F, eye(2)),5);
title(’Decoupled design’);grid
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