
FRTN10 Exercise 4. Loop Shaping, Preparations for Lab 1

Exercises 4.1–4.4 are preparatory exercises for Laboratory Session 1. In these exer-

cises, we will design a controller, step by step, for the process given by the transfer

function

P(s) = 1

s2 + 0.7s+ 1

4.1 Create a transfer function object in Matlab, and take a look at the Bode and

Nyquist diagrams of the process. In the following exercises you will use a

number of different controllers to shape the Bode diagram of the open-loop

system.

The structure of the control system is given in Figure 4.1. As you may have al-

ready heard, several transfer functions should be studied in a design. Besides

a nice step response from r to y, also a fast recovery from, e.g., load distur-

bances, d is required. Furthermore, it is important to see how the control

signal responds to the different input signals.
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Figure 4.1 Our control loop with reference signal r, load disturbance d, measurement noise n

and output y.

We have two degrees of freedom in designing our controller; the feedback

part C(s) and the prefilter F(s).
We start by designing C(s). For evaluation, we can look at the effect of a

step load disturbance d (as this is only affected by the feedback loop). A good

load step disturbance response goes quickly to zero. What is the closed-loop

transfer function from d to y?

a. We will first try to control the system using a simple P-controller. Simulate

load step responses for K=0.1, 1.0, 5.0, 10.0. Does the output go to zero?

How much stationary error is left for different K ’s?

Tip: Use the Matlab command figure(n) to draw several plots. E.g.:

>> figure(1)

>> bode(P*C, P) % Plot both the process and the

>> % compensated open-loop process

>> figure(2)

>> step(P/(1+C*P)) % Plot step load disturbance

>> figure(3)

>> bode(P/(1+C*P)) % Bode plot of closed loop from

>> % load disturbance
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Exercise 4. Loop Shaping, Preparations for Lab 1

b. To remove the stationary error in the response to load disturbances, we need

to add integral action to the controller. The transfer function of a PI controller

is given as

C(s) = K

(

1+ 1

sTi

)

= K

(

sTi + 1

sTi

)

Try some different values of K and Ti, and plot the step load response. Study

the Bode diagram of the open-loop system. What effect does the integrator

have on the phase curve? Try to find a controller that gives good performance.

The error should vanish fast without too much oscillation.

4.2 To create a more advanced controller, we need to know the effect of adding

additional poles and zeros to the controller, C(s).

a. Let Ca(s) = 1
s/a+1

. How are the magnitude and the phase affected by a?. When

and why would we add this kind of system to our controller?

b. Let Cb(s) = s/b+1

1
. Again, how are magnitude and phase affected by b?

When/why would we add this kind of system to our controller?

4.3 By combining a pole and a zero, we get a compensator in the form

C(s) = K
(s/b+ 1)
(s/a+ 1)

A compensator where b < a is called a lead compensator, and a compensator

having b > a is called a lag compensator. Plot the Bode diagrams for the two

cases, and recall the properties of the lead and lag compensators from the

basic course.

Now create a feedback controller

C(s) = K
(sTi + 1)

sTi
·

(s/b+ 1)
(s/a+ 1)

for the process P(s), by adding a pole and a zero to the PI controller in

Problem 4.1. Note that the added compensator will allow you to adjust the

parameters, K and Ti, of the PI controller.

Requirements:

• The disturbance step response should settle within about 5 seconds.

Specifically, py(t)p < 4 · 10−3 for t > 5.

• No more than 20% overshoot in the step response from r to y.

Hints:

• Faster response is often tightly connected to a higher cut-off frequency

ω c.

• Oscillations are due to bad margins (being close to the −1 point in the

Nichols or Nyquist diagrams).

If needed you can add more poles and zeros to your controller, but make sure

that you keep the number of poles at least as many as the zeros. This will

ensure that the system is proper, i.e. is not containing a pure derivative.
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4.4 a. Calculate the closed-loop transfer function Gyr(s) from reference r to output y

with your controller in the loop. What would be the ideal frequency response

for this transfer function?

b. The control signal u(t) to the process is physically limited by

−10 ≤ u(t) ≤ 10,

which must be taken into account in the design. This limits how fast we can

change the process.

Simulate the step response. Is the constraint on u(t) satisfied? Improve Gyr(s)
by tuning the prefilter F(s) so that the step response behaves nicely. How

should F(s) compensate Gyr(s) in the frequency domain?

4.5 (*) A servo system has the transfer function:

Go(s) =
2.0

s(s+ 0.5)(s+ 3)

The closed system has a step response according to Figure 4.2. It is clear that

the system is poorly damped and has a large overshoot. It is, however, fast

enough. Create a lead controller that stabilizes the system by increasing the

phase margin to φm = 50○, without changing the cut-off frequency. (φm = 50○

gives a relative damping of ζ ( 0.5 which achieves an overshoot of M ( 17%).

The stationary error for the closed system is 0.75 for a ramp-shaped input

signal. The error for a ramp function at the compensated system must not

exceed 1.5.
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Figure 4.2 Step response from the closed servo system in 4.5.

Hint: It might be helpful to review the chapter in the basic course about

lead/lag filters and the design process presented there.

4.6 (*) Consider the control system in Figure 4.1, where the plant is described by

P(s) = 1

(s+ 1)(s+ 0.02)
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and F(s) = 1. An unexperienced engineer has designed the controller

C(s) = (s+ a)
s

with a = 0.02, but the resulting control system reacts extremely slowly to

step disturbances in d. The reason is that the slow pole in −0.02 is canceled

by the controller zero. The Bode diagrams of the plant, the controller, and the

open-loop system are shown in Figure 4.3.

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

10
4

Bode diagram

M
a

g
n

it
u

d
e

P(s)
C(s)
P(s)C(s)

10
−3

10
−2

10
−1

10
0

10
1

−200

−150

−100

−50

0

Frequency [rad/s]

P
h

a
s
e

 [
d

e
g

]

Figure 4.3 The Bode diagrams of P(s), C(s) and the open loop P(s)C(s) when a = 0.02.

a. The load disturbance d is typically most significant at low frequencies, so we

are interested in keeping the magnitude of the transfer function Gyd from

d to y significantly smaller than 1 in a frequency range [0,ωb]. What is

(approximately) ωb if you use the given controller? Use the Bode diagram in

Figure 4.3.

b. To reject the disturbance d faster, ωb should be increased. For noise reasons,

we want the cross-over frequency of the system to be the same.

How should the value of a in the controller be changed to achieve this?

Motivate your design by showing that:

• The range [0,ωb] where you get good disturbance rejection of d is in-

creased.

• The cross-over frequency of the system is still approximately the same.

Exact proofs are not required; some Bode-diagram reasoning will do.
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Solutions 4. Loop Shaping, Preparations for Lab 1

Solutions to Exercise 4. Loop Shaping, Preparations for

Lab 1

4.1 This is a preparatory exercise for the laboratory session. This is not a complete

solution, just some helpful tips.

a. Since we cannot change the phase of the system using a P-controller, higher

gain will lead to lower phase margin (as the phase approaches -180 for high

frequencies).

Higher gain will also decrease stationary errors, but increase the maximum
peak in the sensitivity function (making the system very sensitive to mea-
surement noise).

>> figure(1)

>> step(P/(1+0.1*P),P/(1+1*P),P/(1+5*P),P/(1+10*P));

>> title(’Step responses’)

>> figure(2)

>> bode(P/(1+0.1*P),P/(1+1*P),P/(1+5*P),P/(1+10*P));

>> title(’Transfer functions from load disturbance’);

>> figure(3)

>> bode(1/(1+0.1*P),1/(1+1*P),1/(1+5*P),1/(1+10*P));

>> title(’Sensitivity functions’);

b. It is not possible to achieve good behavior with a PI controller, but try to get
it as good as possible:

>> figure(1)

>> K= ... ; Ti = ... ;

>> C = tf(K*[1 1/Ti],[1 0]);

>> step(P/(1+C*P);

4.2 This is a preparatory exercise for the laboratory session. This is not a complete

solution, just some helpful tips.

a. From the basic course: We calculate the gain qC(iω)q = 1/
√

ω2/a2 + 1 and

use log scale. Then

log pC(iω)p = −0.5 log(ω2/a2 + 1) (
{

0 ω << a

log(a) − log(ω) ω >> a

and the two lines meet where ω = a (the breakpoint). Also, the phase is at

−45○ at ω = a, starts at 0○ and ends at −90○.

We can add a pole to the controller if we want to decrease gain for higher

frequencies, e.g., to limit the cut-off frequency ω c. It is often the case that

we want to increase the gain at low frequencies, but keep it low at high

frequencies. We can then use a controller of the type C(s) = K/(s/a + 1)
with a pole to limit high frequency gain and a static gain larger than one to

increase the low frequency gain.

>> C01 = tf([1],[1/0.1 1]);

>> C1 = tf([1],[1/1 1]);

>> C5 = tf([1],[1/5 1]);

>> bode(C01, C1, C5);
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b. The same as in (a), except that a zero breaks the gain up at b.

log pC(iω)p = 0.5 log(ω2/b2 + 1) (
{

0 ω << b

log(ω) − log(b) ω >> b

We can add a zero to the controller to increase gain at high frequencies in

order to increase the cut-off frequency ω c. Also, since the phase of the zero

goes to +90○, we increase the phase margin by adding a zero.

4.3 This is a preparatory exercise for the laboratory session. This is not a complete

solution, just some helpful tips.

The following Matlab code shows some relevant plots for a design:

>> s = tf(’s’);

>> C = ...; % Make up your own design

>> figure(1)

>> margin(C*P) % Plot open-loop frequency response

>> figure(2)

>> % Plot step responses from load disturbance and reference signal to output signal y.

>> subplot(2,1,1)

>> step(P/(1+P*C));

>> title(’Load step response’);

>>

>> subplot(2,1,2)

>> step(P*C/(1+P*C))

>> title(’Reference step response’);

4.4 This is a preparatory exercise for the laboratory session. This is not a complete

solution, just some helpful tips.

a. The ideal frequency response is Gyr " 1. Then we would always have y = r.

However, achieving something close to this would require very aggressive

control, so that is not a good idea. (The controller would need to invert the

process dynamics, resulting in second-order derivative action on the control

error).

b. We want to shape F(s) so that the constraints on the control signal are

respected, for a step change in the reference. This may be achieved by reducing

the bandwidth.

4.5 Plot the Bode diagram for Go(s) in Matlab or use the command

>> [Gm,Pm,Wcg,Wcp] = margin(G_o)

to calculate the cut-off frequency ω c = 0.73 and the phase margin φm = 20.7○.
To reach the aim of a φm,desired = 50○, the controller has to increase the phase

at the cut-off frequency with approx 30○. We use the lead compensation given

by

Gk(s) = K N
s+ b

s+ bN
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Figure 4.1 To the left: Plot of φδ against b. To the right: Step response from the original

system and the compensated system in Problem 4.5.

with the phase

φ = arctan
( s

b

)

− arctan
( s

bN

)

The maximum of the phase compensation for the compensator is at the fre-

quency b
√

N, which preferably should coincide with ω c, hence N = (ω c/b)2.

Plot the phase addition of the compensator given by

φδ = arctan
(ω c

b

)

− arctan

(

b

ω c

)

and determine that the factor b ( 0.4 for φδ = 30○ (see Figure 4.1). To
keep the cut-off frequency invariant the gain of the compensator has to be

calculated from pGk(iω c)Go(iω c)p = K
√

N · 1 gives K = 1√
N
= 0.55. Plot the

step response by the commands:

>> G_l=tf(K*N*[1 b],[1 b*N])

>> step(G_o*G_l/(1+(G_o*G_l))

The stationary error:

E(s) = 1

1+ GkGo
U(s) = s(s+ 0.5)(s+ 3)(s+ bN)

s(s+ 0.5)(s+ 3)(s+ bN) + 2K N(s+ b)U(s)

The Laplace transform of a ramp function is U(s) = 1/s2 and the error is

lim
s→0

sE(s) = 1.5

2K
= 1.37

which fulfills the specification.

4.6 a. The transfer function from d to y is given by

Gyd(s) =
P

1+ PC

For frequencies ω ≤ 0.5 (approximately), it can be seen in the Bode diagram

that both pP(iω)p ≫ 1 and pP(iω)C(iω)p ≫ 1. Therefore Gyd(s) ( 1
C

, and

pC(iω)p becomes larger than 1 for frequencies ω ≤ 0.02.
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The magnitude of Gyd(s) is thus smaller than 1 in a frequency range of

approximately [0, 0.02], thus ωb = 0.02 rad/s.

This can also be seen as the frequency point where pPCp becomes larger than

pPp in the bode diagram.

b. To increase ωb, we would like to increase the gain of C(iω) for frequencies

ω > 0.02. This is done by moving the zero in C(s) (the break-point in the

Bode diagram) from 0.02 to some higher frequency.

Choose, e.g., a = 0.1. Motivation:

• As Gyd(s) ( 1
C

, and pC(iω)p now becomes larger than 1 for frequencies

ω ≤ 0.1, ωb has been increased to about 0.1.

• The cut-off frequency for a = 0.02 is ω c ( 0.8. As this frequency is

higher than the new break-point 0.1, C(iω c) ( 1 still holds [ the cut-off

frequency stays the same.

8


	Loop Shaping, Preparations for Lab 1
	Loop Shaping, Preparations for Lab 1

