
FRTN10 Exercise 3. Disturbance Models and Robustness

3.1 a. Analyze the stability of the system to the left in Figure 3.1 using the small

gain theorem.

b. Analyze how the stability of the system to the right in Figure 3.1 depends

on the constant feedback gain K . If you get different results from a, explain

why!

a)

Σ
1

s+ 1

∆(s)
b)

Σ
1

s+ 1

−K

Figure 3.1

3.2 Consider the system in Figure 3.2.
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Figure 3.2 System for Problem 3.2.

a. Find the transfer function Gvn from n to v.

b. How large is the gain qGvnq∞? Support the solution by a Matlab plot.

c. Using the small gain theorem, find the largest possible L2-gain of ∆ for which

the closed-loop system is stable.

d. The ∆ block is used to account for uncertainty in the process model. Explain

the role of the factor s
s+2

multiplying ∆.

3.3 A feedback system is shown in Figure 3.3.

a. Compute the poles of the closed-loop system.
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Exercise 3. Disturbance Models and Robustness
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Figure 3.3 System in Problem 3.3.

b. Derive the transfer functions from r, d, v and n to z. Identify the sensitivity

function S and the complementary sensitivity function T. Plot them in the

same Bode plot.

c. If we have a disturbance v = sin(0.5t) acting on the system and all other

input signals are zero, what amplitude would the oscillations in the output

signal have when the transients have disappeared?

d. If we have sinusoidal measurement disturbances n(t) with a frequency of 50

Hz and unit amplitude and all other input signals are zero, what amplitude

would the oscillations in the output signal have when the transients have

disappeared?

3.4 (*) Consider the system in Figure 3.4.
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Figure 3.4 System for Problem 3.4.

a. What is the largest possible bound on the L2-gain of ∆, for which the closed-

loop system is stable, by the small gain theorem?

b. If ∆(s) is replaced by a real parameter δ , then for what values of δ is the

closed loop stable? Compare with the gain bound in (a).

c. What is the difference between the uncertainty model in this problem and

the one in Figure 3.2?
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Exercise 3. Disturbance Models and Robustness

3.5 A continuous-time stochastic process u(t) has the power spectrum Φu(ω). The

process can be represented by a linear filter that has white noise as input.

Determine the linear filter when

a.

Φu(ω) =
a2

ω2 + a2

b.

Φu(ω) =
a2b2

(ω2 + a2)(ω2 + b2)

3.6 Consider a missile travelling in the air. It is propelled forward by a jet force u

along a horizontal path. The coordinate along the path is z. We assume that

there is no gravitational force. The aerodynamic friction force is described by

a simple model as

f = k1 · ż+ v,

where v are random variations due to wind and pressure changes. Combining

this with Newton’s second law, mz̈ = u− f , where m is the mass of the missile,

gives the input-output relation

z̈+ k1

m
ż = 1

m
(u− v).

a. Express the input-output relation in state-space form.

b. The disturbance v has been determined to have the spectral density

Φv(ω) = k0 ·
1

ω2 + a2

Expand your state-space description so that the disturbance input can be

expressed as white noise.

3.7 (*) This problem builds on Problem 3.6.

a. Assume that the position measurement is distorted by an additive error n(t),

y(t) = z(t) + n(t)

Write down the state-space equations for the system, assuming that n(t) is

white noise with intensity 0.1, i.e. Φn(ω) " 0.1.

b. Solve the same problem, this time with

Φn(ω) = 0.1
ω2

ω2 + b2
.

c. Solve the problem with

Φn(ω) = 0.1
1

ω2 + b2
.
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Exercise 3. Disturbance Models and Robustness

3.8 (*) Consider a swing that is hanging outside in the wind. The swing is described

by the transfer function

Y (s) = 1

s2 + s+ 1
U(s)

where the output signal y(t) is the angle of the swing (relative to the vertical

axis) and the input signal u(t) is the moment around the pivotal point. The

influence of wind can be described as

u(t) = Kv(t)

where v(t) is a normally distributed disturbance with spectrum

Φv(ω) =
2α

α2 +ω2
, α > 0.

K is a measure of the wind strength and α is a measure of the occurrence of

wind gusts.

a. Does α increase or decrease when there are more wind gusts (i.e., when the

wind changes strength and direction more often)?

b. Determine the variance of y(t). What is your interpretation?

Hint: Equation (5.25) in Glad & Ljung might be helpful, also

1

2π

∫∞

−∞

pb2(iω)2 + b1iω + b0p2
p(iω)3 + a2(iω)2 + a1iω + a0p2

dω

= b2
2a0a1 + (b2

1 − 2b0b2)a0 + b2
0a2

2a0(−a0 + a1a2)

3.9 (*) Consider an electric motor with the transfer function

G(s) = 1

s(s+ 1)

from input current to output angle.

There are two different disturbance scenarios:

(i) Y (s) = G(s)(U(s) + W(s))
(ii) Y (s) = G(s)U(s) + W(s)

In both cases, ẇ(t) = v(t), where v(t) is a unit disturbance, e.g., an impulse.

a. Draw a block diagram of the two cases.

b. Put both cases in state-space form. It is assumed in the second case that the

disturbance does not give cause to any common states with the engine.

c. Give a physical interpretation of w(t) is, in the two cases.
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Solutions 3. Disturbance Models and Robustness

Solutions to Exercise 3. Disturbance Models and

Robustness

3.1 Let

G(s) = 1

s+ 1
.

a. The closed loop is guaranteed to be stable accoring to the small gain theorem

if ppGpp · pp∆pp < 1. We see that ppGpp = 1 (use norm(G,inf) or look at the Bode

Plot), so the system is guaranteed to be stable if pp∆pp < 1.

b. The loop gain is given by

L(s) = G(s)K = K

s+ 1
,

and the sensitivity function by

S = 1

1+ L
= 1

1+ K
s+1

= s+ 1

s+ 1+ K
.

We see that there is one closed-loop pole in s = −(1 + K), so the system is

stable exactly when K > −1. We can compare this to the result in a, which

guarantees that the system is stable when pK p < 1.

The different results arise from the fact that the small gain theorem is con-

servative in nature, i.e. it gives a sufficient condition on stability, but that

condition may not be necessary. The main reason of such a conservatism, is

that there is no a priori assumptions on ∆. ∆ in a can be a transfer func-

tion of an arbitary order, not just an unknown scalar as in b. Looking at the

closed-loop poles, on the other hand, shows exactly when the system is stable.

3.2 a. Block diagrams of the original and the rewritten closed-loop system are shown

in Figure 3.1. We have

C(s) = 2s+ 2

s
P(s) = 1

(s+ 1)2 W(s) = s

s+ 2

Gvn(s) = −
C(s)W(s)

1+ P(s)C(s) = −
2s4 + 6s3 + 6s2 + 2s

s4 + 4s3 + 7s2 + 8s+ 4
= − 2s3 + 4s2 + 2s

s3 + 3s2 + 4s+ 4

Matlab commands:

>> s = tf(’s’);

>> C = 2*(s+1)/s

>> P = 1/(s+1)^2

>> W = s/(s+2);

>> Gvn = -feedback(C,P)*W;

b. The L2-gain of Gvn is equal to 2.63. This corresponds to the peak magnitude

in the Bode diagram of Figure 3.2.
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C(s) P(s)
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n
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n

Gvn(s)

Figure 3.1 Systems for Problem 3.2.

c. The small gain theorem shows stability for all perturbations, ∆, satisfying

pp∆pp∞ · ppGvnpp∞ < 1

The closed-loop system is therefore stable for all perturbations ∆ with

q∆q∞ < 1/qGvnq∞ = 0.38

Matlab commands:
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Figure 3.2 Bode magnitude diagram for Gvn(s).
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Solutions 3. Disturbance Models and Robustness

>> norm(Gvn, inf)

>> 1/ans

d. Process models are often better (that is, they match the real process more

closely) in the low frequency range. As frequency increases there is usually

excitation of higher-order dynamics and non-linearities in the real process,

which is not covered by the model.

Since we know that there is more uncertainty for high frequencies, this can

be used to get some structure on the uncertainty block. This structure is given

by the extra factor (such factors are usually called weighting functions), which

effectively makes the uncertainty smaller for low frequencies (approximately

when ω < 2). Without this factor, the analysis would assume equal uncer-

tainty for all frequencies, yielding a lower bound on the L2-gain of ∆. In other

words, the system would appear less robust.

3.3 a. Matlab commands:

>> s = tf(’s’);

>> P = 1/(s+2);

>> C = (0.81*s+3.6)/(0.225*s)

>> G = feedback(C*P,1);

>> pole(G)

ans =

-2.8000 + 2.8566i

-2.8000 - 2.8566i

b. The transfer functions are

Z = 1

1+ C P
V + P

1+ C P
D − C P

1+ C P
N + C P

1+ C P
R

Z = SV + S P D + T(R − N)

Z(s) = ( S(s) S(s)P(s) T(s) −T(s) )








V(s)
D(s)
R(s)
N(s)








Matlab commands:

>> T = feedback(C*P,1);

>> S = 1-T;

>> bode(T)

>> hold on

>> bode(S)

>> S

Transfer function:

s^2 + 2 s

----------------

s^2 + 5.6 s + 16

>> T
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Transfer function:

3.6 s + 16

----------------

s^2 + 5.6 s + 16

−40

−30

−20

−10

0

10

M
a

g
n

it
u

d
e

 (
d

B
)

10
−1

10
0

10
1

10
2

−90

−45

0

45

90

135

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency  (rad/sec)

Figure 3.3 Bode diagrams of S and T in Problem 3.3.

c. In the bode plot of the sensitivity function, we see that qS(i0.5)q = −23.8 dB =
10(−23.8/20) = 0.0646

Matlab commands:

>> abs(freqresp(S,0.5))

ans =

0.0644

d. We convert ω = 2π50 Hz = 314.16 rad/s. In the bode plot of the com-

plementary sensitivity function, we see that qT(i314.16)q = −38.8 dB =
10(−38.8/20) = 0.0115

We have very good attenuation of both load disturbances and measurement

noise.

3.4 a. The transfer function from n to v as seen in Figure 3.4 can be written as
H = −PCW

1+PC
according to the following Matlab commands:

>> s = tf(’s’);

>> W = s/(s+1);

>> P = 1/(s+2);

>> C = (0.81*s+3.6)/(0.225*s);

>> H = -feedback(P*C,1)*W;
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Figure 3.4 Rewritten closed-loop system for Problem 3.4(a).
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Figure 3.5 Nyquist plot of −H(s) in Problem 3.4(b).

>> norm(H,inf)

ans =

1.0072

>> lower_bound = 1/ans

ans =

0.9928

b. We know that ∆(s) = δ , a real number. Looking at Figure 3.4 we see that we

can apply the Nyquist Criterion to analyze the closed-loop stability.

From the Nyquist Plot of −H(s) in Figure 3.5, we see that the closed loop

is stable for all δ ≥ 0. For negative δ :s, the closed loop will become unstable

once the bubble formed by the Nyquist Curve has grown so large that −1 is

no longer on its outside. We find this value to be −δ = 1.0119 from the gain

margin of −H. Thus, the system is stable when δ > −1.0119.

The small gain theorem is easy to use, but it can be conservative, since there

is no prior assumptions on structure of uncertainty. With more information

about the uncertainty, the bounds can be less conservative and we can allow

all positive values of δ as well.

Matlab code:

>> nyquist(-H)
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Solutions 3. Disturbance Models and Robustness

>> allmargin(H)

ans =

GainMargin: 1.0119

GMFrequency: 2.3256

PhaseMargin: [-4.4628 -18.9141]

PMFrequency: [2.5211 3.1922]

DelayMargin: [2.4614 1.8649]

DMFrequency: [2.5211 3.1922]

Stable: 1

c. In the referenced figure the uncertainty is added to the process. This is called

an additive uncertainty, ie. P + ∆. Here, the uncertainty is multiplied to the

output signal, giving a multiplicative uncertainty, ie. P(1 + ∆). In this type

of model, the uncertainty is proportional to the process gain.

3.5 Φu(ω) is an even, scalar, non-negative function. Thus we can divide it into

Φu(ω) = G(iω)G(−iω)Φe(ω)

where G(s) has its poles and zeroes in the left half-plane and Φe = 1 (white

noise).

a.

Φu(ω) =
a2

ω2 + a2
Φe(ω) =

a

iω + pap ·
a

−iω + pap
So the linear filter is

G(s) = a

s+ pap

b. In the same way, we get

Φu(ω) =
a2b2

(ω2 + a2)(ω2 + b2)Φe(ω)

= ab

(iω + pap)(iω + pbp) ·
ab

(−iω + pap)(−iω + pbp)

[ G(s) = ab

(s+ pap)(s+ pbp)

3.6 a. To make a state-space description, we let x1 = z, x2 = ż =[

ẋ1 = x2,

ẋ2 =
1

m
(u− k1 x2 − v).

In matrix form:

ẋ =
(

0 1

0 − k1

m

)

x+
(

0
1
m

)

u+
(

0

− 1
m

)

v,

z = ( 1 0 ) x.
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Solutions 3. Disturbance Models and Robustness

b. We want to find a filter H such that

Φv(ω) = pH(iω)p2Φe(ω)

Thus H(s) =
√

k0

s+pap , which is equivalent to v̇+ papv =
√

k0 e.

Adding a new state x3 = v to the state-space description, gives

ẋ3 = −papx3 +
√

k0e

and

ẋ =






0 1 0

0 − k1

m
− 1

m

0 0 −pap




 x+






0
1
m

0




 u+






0

0√
k0




 e

z = ( 1 0 0 ) x, Φe(ω) = 1

3.7 a. With {A, B, C, N} according to the solution of problem 3.6, we have

ẋ = Ax+ Bu+ Ne

y = Cx+ n

where n has spectral density Φn " 0.1.

b. A noise signal with the specified spectral density is given by the output of

a linear system with white noise input that has spectral density Φwn
= 0.1.

The transfer function of the system is

Gn(s) =
s

s+ pbp =
s+ pbp − pbp

s+ pbp = 1− pbp
s+ pbp

In state-space form this can be expressed as

ẋ4 = −pbpx4 + pbpwn

n = −x4 + wn

Combining the noise model with our original system gives the expanded

state-space description:

ẋ =
(

A 0

0 −pbp

)

x+
(

B

0

)

u+
(

N 0

0 pbp

)(

e

wn

)

y =
(

C −1
)

x+ wn, Φωn
= 0.1

Note that the disturbance can be described using a transfer function and

white noise of any spectral density. For instance, it is often convenient to

assume white noise with a spectral density of 1. In this case, the transfer

function of the system would be

Gn(s) =
√

0.1s

s+ pbp

The expanded state space description would then need to be adjusted to

account for this.
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c. Now, the transfer function of the noise model is Gn(s) = 1
s+pbp . In state-space

form, this is

ẋ4 + pbpx4 = wn.

The expanded system becomes

ẋ =
(

A 0

0 −pbp

)

x+
(

B

0

)

u+
(

N 0

0 1

)(

e

wn

)

y = (C 1 ) x, Φωn
= 0.1

As in subproblem b, the disturbance can be described using a transfer function

and white noise of any spectral density. Assuming white noise with a spectral

density of 1, the transfer function of the system would be

Gn(s) =
√

0.1

s+ pbp

3.8 a. The spectrum of the wind is of low-pass character with cut-off frequency α.

When α is increased, v(t) becomes more similar to white noise, i.e. there is

more high-frequency content in the signal. Thus, higher α means more wind

gusts.

Alternatively, one could look at the covariance function:

Rv(τ) =
1

2π

∫∞

−∞
Φv(ω)eiωτ dω = e−αpτ p, α > 0.

The covariance function has a sharper peak when α is large. That is, the

correlation between v(t) and v(t+τ) is small, meaning that the wind changes

more often.

b. Using spectral factorization, the influence of wind can be described as white

noise e(t) with intensity 1 filtered through a linear system with transfer

function

H(s) =
√

2/α
1+ s/α

Thus Y (s) = G(s) H(s)E(s), where

G(s) H(s) = K
√

2α

(α + s)(s2 + s+ 1) =
K
√

2α

s3 + (1+α)s2 + (1+α)s+α
.

The variance of the output is

Var(y) = 1

2π

∫∞

−∞
pG(iω)H(iω)p2dω

= 1

2π

∫∞

−∞

∣
∣
∣
∣
∣

K
√

2α

(iω)3 + (1+α)(iω)2 + (1+α)iω +α

∣
∣
∣
∣
∣

2

dω

= K2(1+α)
1+α +α2

.
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Apparently, the variance increases with wind strength, which is no surprise.

However, the variance decreases with the amount of wind gusts. The reason

is that a low amount of gusts means that there are longer periods of almost

constant wind force, where the swing is displaced far from the origin. A lot of

gusts, on the other hand, results in the wind force changing sign frequently,

more or less cancelling its own effect a lot of the time.

3.9 a. (i)

1

s(s+ 1)
+

1

s

u

v

w

y

(ii)

1

s(s+ 1)
+

1

s

u

v

w

y

v(t) is a unit disturbance

b. (i)

ẋ =

A
︷ ︸︸ ︷




0 1 0

0 −1 1

0 0 0




 x+

B
︷ ︸︸ ︷




0

1

0




 u+






0

0

1




 v

y = ( 1 0 0 )
︸ ︷︷ ︸

C

x.

(ii)

ẋ =

A
︷ ︸︸ ︷




0 1 0

0 −1 0

0 0 0




 x+

B
︷ ︸︸ ︷




0

1

0




 u+






0

0

1




 v

y = ( 1 0 1 )
︸ ︷︷ ︸

C

x.
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c. (i) w(t) could be an offset current on the input to the motor, and/or a step

disturbance in the load.

(ii) In this case w(t) is a measurement disturbance, i.e. an additive error

(constant) in the angle measurement. It could also be interpreted as a

load disturbance on the process output. A controller could remove the

effect from a load disturbance on the process output, but not a constant

measurement disturbance, so the interpretation makes a difference.
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