FRTN10 Multivariable Control, fall 2016

Administration

Course responsible is Anton Cervin (anton@control.lth.se, 046-222 44 75, M:5145). Course administrator is Mika Nishimura (mika@control.lth.se, 046-222 87 85, M:5141). Their offices are on the 5th floor of the M building.

Prerequisites

FRT010 Automatic Control, Basic Course or FRTN25 Automatic Process Control is required prior knowledge. It is assumed that you have taken the basic courses in mathematics, including linear algebra and calculus in several variables, and preferably also systems & transforms or linear systems.

Course material

All course material is available in English. Most lectures are covered by the following textbook sold by KFS AB:

Torkel Glad and Lennart Ljung (2003), Reglerteori — Flervariabla och olinjära metoder (2 uppl.), Studentlitteratur, ISBN 9789144030036.

English edition: Torkel Glad and Lennart Ljung (2000), Control Theory — Multivariable and Nonlinear Methods, CRC Press/Taylor & Francis, ISBN 9780748408788.

Lecture slides, lecture notes, excercise problems, and laboratory assignments are provided on the **course homepage**: http://www.control.lth.se/course/FRTN10

Lectures

The lectures (30 hours in total) are given by Anton Cervin on Mondays (w. 35–39, 41), Tuesdays (w. 35–36), and Thursdays (w. 35–41). See the LTH schedule generator for details.

Exercise sessions

The exercise sessions (28 hours in total) are arranged in three groups (free choice):

Group	Times	Room	Teaching assistant
1	Wed 10–12, Fri 8–10	Lab A	Marcus T. Andrén (marcus@control.lth.se)
2	Wed 13–15, Fri 10–12	Lab A	Josefin Berner (josefinb@control.lth.se)
3	Wed 15–17, Fri 13–15	Lab A	Olof Troeng (oloft@control.lth.se)

The sessions are held in the course lab of Automatic Control LTH, located on the ground floor in the south-west part of the Mechanical Engineering building.

Laboratory experiments

The three laboratory sessions (12 hours in total) are mandatory. Booking lists are posted on the course homepage. You must sign up before the first session starts. Before each lab session there are preparatory assignments that must be completed. No reports are required after the labs.

Lab	Weeks	Booking opens	Room	Responsible	Process
1	37–38	Aug 30	Lab C	Olof Troeng	Flexible servo
2	39–40	Sep 13	Lab C	Josefin Berner	Quadruple tank
3	41 – 42	Sep 27	Lab B	Marcus T. Andrén	Rotating crane

Exam

The exam is given on October 25 at 08:00–13:00. A second occasion is on January 3, 2017. The textbook, lecture notes, and lecture slides (with markings/notes) are allowed on the exam. You may also bring an *Automatic Control—Collection of Formulae*, standard mathematical tables (TEFYMA), and a pocket calculator.

Weekly plan, fall 2016

Week	Date		Content	Relevant book sections	
35	Aug 29	L1:	Introduction	secs 1.1-1.5	
	Aug 30	L2:	Stability and robustness	secs 1.6, 2.1–2.5, 3.1, 3.4, 3.5	
	Aug 31	E1:	Control in Matlab	, , , ,	
	Sep 1	L3:	Disturbance models	secs 5.1–5.6, 6.1–6.3	
	Sep 2	E2:	System representations and stability		
36	Sep 5	L4:	Control synthesis in frequency domain	secs 6.4–6.6 8.1–8.2	
	Sep 6	L5:	Case study		
	Sep 7	E3:	Disturbance models and robustness		
	Sep 8	L6:	Multivariable zeros, singular values, controllability/observability	secs 3.2–3.3, 3.5–3.6	
	Sep 9	E4:	Loop shaping, preparations for Lab 1	,	
37	Sep 12	L7:	Fundamental limitations	secs 7.2–7.9	
	Sep 14	E5:	Multivariable zeros, singular values and controllability/observability		
	Sep 15	L8:	Decentralized control	secs 8.3, 8.5	
	Sep 16	E6:	Fundamental limitations		
37–38	LAB SE	SSION			
38	Sep 19	L9:	Linear-quadratic optimal control	secs 5.7 and 9.1–9.4	
	Sep 21	E7:	Controller structures, preparations for Lab 2		
	Sep 22	L10:	Optimal observer-based feedback	same as L9	
	Sep 23	E8:	Linear-quadratic optimal control		
39	Sep 26	L11:	More on LQG	sec 10.2	
	Sep 28	E9:	Kalman filtering, LQG		
	Sep 29	L12:	Youla parametrization, dead-time compensation	sec 8.4	
	Sep 30	E10:	LQG, preparations for Lab 3		
39–40					
40	Oct 5 E11: Youla parametrization, dead-time compensation				
	Oct 6	L13:	Synthesis by convex optimization	handout	
	Oct 7	E12:	Synthesis by convex optimization.		
41	Oct 10	L14:	Controller simplification	sec 3.6	
	Oct 12	E13:	Controller simplification		
	Oct 13	L15:	Overview of the course		
	Oct 14	E14:	Old exam		
41–42	LAB SESSION 3: LQG control of rotating crane				
43	Oct 25		EXAM		
	- -				