
Solutions to Exam in Multivariable Control 2012-10-24

1. Start by applying the Laplace transformation to both sides of the equations:

s2Y1 + 2sY1 − Y2 + Y1 = U1 + sU2 + 2U2

Y2 + sY1 + Y1 = U1 − 2U2

or equivalently in matrix form:

(

(s + 1)2 −1

s + 1 1

)(

Y1

Y2

)

=

(

1 s + 2

1 −2

)(

U1

U2

)

The transfer function matrix is then given by

G(s) =

(

(s + 1)2 −1

s + 1 1

)−1(
1 s + 2

1 −2

)

=
1

(s + 1)(s + 2)

(

1 1

−(s + 1) (s + 1)2

)(

1 s + 2

1 −2

)

=
1

(s + 1)(s + 2)

(

2 s

s(s + 1) −3(s + 1)(s + 4
3)

)

=

( 2
(s+1)(s+2)

s
(s+1)(s+2)

s
s+2 −3s+4

s+2

)

2 a. The determinant of G(s) is given by

det G(s) =
α

(s + 1)(s + 2)
+

s + 2

(s + 1)2
=

s2 + (4 + α)s + 4 + α

(s + 1)2(s + 2)

Thus, the poles are located in s = −1 (multiplicity 2) and s = −2 (multiplicity
1). The transmission zeros are located at the roots of the zero polynomial

s2 + (4 + α)s + 4 + α

The system is non-minimum phase when 4 + a < 0, i.e. when a < −4.

b. A diagonal state space realization can be derived by noting that

(

α
s+1 − s+2

s+1

1
s+1

1
s+2

)

=

(

α
s+1 −1 − 1

s+1

1
s+1

1
s+2

)

=
1

s + 1

(

α −1

1 0

)

+
1

s + 2

(

0 0

0 1

)

+

(

0 −1

0 0

)

=
1

s + 1

(

α −1

1 0

)(

1 0

0 1

)

+
1

s + 2

(

0

1

)

( 0 1 ) + D

=
1

s + 1
C1B1 +

1

s + 2
C2B2 + D

Note that the pole in s = −1 with multiplicity 2 requires us to have a B1

with two columns. Also note that the factorizations CiBi are not at all unique.
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Taken together, this allows us to write the corresponding diagonal state space
realization as

ẋ =

(

−p1I2x2 0

0 −p2

)

x +

(

B1

B2

)

u

y = ( C1 C2 ) x + D

where p1 = 1 and p2 = 2, or explicitly

ẋ =







−1 0 0

0 −1 0

0 0 −2






x +







1 0

0 1

0 1






u

y =

(

α −1 0

1 0 1

)

x +

(

0 −1

0 0

)

3 a. It is a weighting function giving the unstructured uncertainty some structure.
In this case it says that the uncertainty is small for low frequencies, less than
a, and large for high frequencies.

b. By calling the input to the uncertainty block v1 and the output from it v2, the
system can be rewritten according to Figure 1. To derive G(s), first calculate
Y (s):

Y (s) = P (s)(V1 − C(s)Y (s))

⇒ Y (s) =
P (s)

1 + C(s)P (s)
V1(s)

Now V2(s) is given by

V2(s) =
s

s + a
Y (s) =

P (s) s
s+a

1 + C(s)P (s)
V1(s)

and the transfer function G(s) is hence given by

G(s) =
P (s) s

s+a

1 + C(s)P (s)

v1

∆
v2

G(s)

Figure 1 Equivalent block diagram for the system in problem 3.

The closed loop system is stable according to the small gain theorem if and
only if ‖∆‖ < γ∗ where γ∗ = 1

sup
ω

|G(iω)|
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4 a. We will here refer to the state in the system P as x1. The output can be written
as y = x1 + v2 where

X1(s) =
6

s + 2.5
(U(s) + V1(s)) ⇒ ẋ1 = −2.5x1 + 6u + 6v1

Φv1
(ω) =

1

ω2 + 1
⇒ v1 =

1

s + 1
e1 ⇒ v̇1 = −v1 + e1 (Φe1

(ω) = 1)

In matrix form, with x =

(

x1

v1

)

, this becomes:

ẋ =

(

−2.5 6

0 −1

)

x +

(

6

0

)

u +

(

0

1

)

e1

y = ( 1 0 ) x + v2

b. The optimal Kalman filter gain is K = (PCT + NR12)R−1
2 . First, the choice of

state variables (and subsequent state space representation, including C) which
corresponds to the P-matrix in the hint must be found. The state representation
found in the first subproblem is inserted into the Riccati equation

0 = R1 + AP + PAT − (PCT + R12)R−1
2 (PCT + R12)T

⇒ 0 = R1 + AP + PAT − PCT CP T

where R1 = ( 0 1 )T × 1 × ( 0 1 ) =

(

0 0

0 1

)

, R2 = 1, R12 = 0

If the first subproblem has been solved as above, this becomes

0 =

(

0 0

0 1

)

+

(

−2.5 6

0 −1

)(

1 1
2

1
2

3
8

)

+

(

1 1
2

1
2

3
8

)(

−2.5 0

6 −1

)

−
(

1 1
2

1
2

3
8

)(

1

0

)

( 1 0 )

(

1 1
2

1
2

3
8

)

=

(

1 1
2

1
2

1
4

)

−
(

1 1
2

1
2

1
4

)

= 0

and we have therefore showed that the given P-matrix relates to the state rep-

resentation X =

(

x1

v1

)

, for which we have known A, B and C matrices. If the

state representation is inverted, i.e. X =

(

v1

x1

)

, the Riccati equation will not

hold and it can be realized that the only other state representation is the afore-
mentioned one, for which we can show as above that the Riccati equation holds.

Using the C matrix given by this state representation, we can then calculate
K using the (simplified) expression

K = PCT =

(

1
1
2

)
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5. 1. True. The Bode diagram clearly shows that there is an integrator in the
process, meaning that for low frequencies the sensitivity function S(s) =
1/(1 + P (s)C(s)) will be close to zero. In particular, S(0) = 0.

2. False. Because of the integrator in the process, the transfer function from
input load disturbance to output at stationarity P (0)S(0) will not be zero.

3. True. According to the Bode diagram of the process, we need to add
phase at the desired cut-off frequency to get the specified phase margin.
A PI-controller can never give a net increase in phase, so this will not be
possible.

4. False. Assuming that the closed loop system is stable, the final value
theorem says that for the error

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
1

1 + P (s)C(s)

1

s2

= lim
s→0

1

s + sP (s)C(s)
= C 6= 0

where C is a nonzero constant, as the integrator in P (s) will be canceled
out by the factor 1/s. Thus, there will be a stationary error.

6. This problem can either be solved by studying the A, B and C matrices directly
or through calculation of the observability and controllability matrices.

Using the first approach:
The dynamics for all states in the system differ from each other (there are no
multiple poles), therefore a state is controllable if the control signals can influ-
ence its value (directly or indirectly) and observable if its value can influence
the measurement signals (directly or indirectly). This means that states 1, 2,
3 and 4 are controllable and states 1, 2, 4 and 5 are observable. The system
as a whole is therefore neither controllable nor observable and the controllable
subspace consists of all states except the 5th and the observable subspace con-
sists of all states except the 3rd.

Using the second approach:

S = ( B AB . . . An−1B ) (n = 5)

⇒

S =

















0 1 0 −1 0 1 0 −1 0 1

0 0 0 −2 0 8 0 −26 0 80

1 0 −4 0 16 0 −64 0 256 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

















The controllability matrix has rank lower than 5 so the system is not control-
lable. We can see that the 5th state is not part of the controllable subspace, as
the 5th row in the controllability matrix only contains zeros.
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O =



















C

CA

AB
...

CAn−1



















(n = 5)

⇒

O =













































0 0 0 1 1

0 1 0 1 1

0 0 0 0 −5

−2 −3 0 0 −5

0 0 0 0 25

8 9 0 0 25

0 0 0 0 −125

−26 −27 0 0 −125

0 0 0 0 625

80 81 0 0 625













































The observability matrix has rank lower than 5 so the system is not observable.
We can see that the 3rd state is not part of the observable subspace, as the
3rd column in the observability matrix only contains zeros.

7 a. The controllability gramian S and the observability gramian O are given by
the solution to the Lyapunov equations

AS + SAT + BBT = 0

AT O + OA + CT C = 0

Since A = AT and B = CT , this reduces to only solving one of the Lyapunov
equations. If the realization is balanced, this amounts to finding a solution in
the form

S = O =

(

σ1 0

0 σ2

)

The terms of the Lyapunov equation then gives the following set of equations

−4σ1 +
1

4
= 0

σ1 + σ2 +
1

2
(−1 −

√
2

2
) = 0

−4σ2 +
1

4
+ (−1 −

√
2

2
)2 = 0

with solution σ1 = 1/16 = 0.0625 and σ2 = 7+4
√

2
16 ≈ 0.7911. Hence, the

realization is balanced.
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b. The smallest Hankel singular value is σ1. This corresponds to eliminating ξ1:

0 = −2ξ1 + ξ2 +
1

2
y2 =⇒

ξ1 =
1

2
ξ2 +

1

4
y2

Inserting this into the rest of the system equations gives

ξ̇2 = ξ1 − 2ξ2 +
1

2
y1 + (−1 −

√
2

2
)y2

=
1

2
ξ2 + +

1

4
y2 − 2ξ2 +

1

2
y1 + (−1 −

√
2

2
)y2

= −3

2
ξ2 +

1

2
y1 − 3 + 2

√
2

4
y2

u1 =
1

2
ξ2

u2 =
1

2
ξ1 + (−1 −

√
2

2
)ξ2 =

1

4
ξ2 +

1

8
y2 + (−1 −

√
2

2
)ξ2

= −3 + 2
√

2

4
ξ2 +

1

8
y2

or in matrix form

ξ̇2 = −3

2
ξ2 +

(

1
2 −3+2

√
2

4

)

y = Aξ2 + By

u =

( 1
2

−3+2
√

2
4

)

ξ2 +

(

0 0

0 1
8

)

y = Cξ2 + Dy

c. Using the Laplace transform and some calculations, the transfer matrix is given
by

G(s) = C(sI − A)−1B + D =
1

s + 1.5

(

1
4 −3+2

√
2

8

−3+2
√

2
8

s+10+6
√

2
8

)

8. A: The unstable pole (p = 2) and the unstable zero (z = 3) means that

‖S‖∞ ≥
∣

∣

∣

z+p
z−p

∣

∣

∣ = 5), and as the given plot of S is less than or equal to 1 it is

clear that the control design is not possible.

B: The unstable pole means that the closed loop system needs a bandwidth
that is at least as fast as the pole. The system in the plot has a bandwidth of
approximately 50 rad/s, and the design may hence be possible.

C: The unstable zero makes it impossible to achieve a closed loop bandwidth
larger than 1 rad/s, which means that the design in the plot that has a band-
width of above 20 rad/s is not possible.

D: By using the reverse triangle inequality: |S−T | ≥ |(|S| − |T |)|, the following
inequality can be derived:

1 = |1| = |S + T | = |S − (−T )| ≥ |(|S| − |T |)|
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⇒ |(|S| − |T |)| ≤ 1

At the frequency ω ≈ 3 rad/s it can be seen in the plot that |S| = 4 and |T | =
0.7, but inserting this into the above relation gives |(|S| − |T |)| = |4 − 0.7| =
3.3, and this is clearly not less than 1, and this design is therefore also not
possible.
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