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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach
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Lecture 14: Controller simplification

• Model reduction by balanced truncation

○ Application to controller simplification

○ Frequency weighted balanced truncation

Model reduction by balanced truncation is described in Glad/Ljung,

section 3.6.
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Example — DC-motor
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We previously minimized
∫∞
−∞ Gzw(iω )Gzw(iω )

∗dω subject to step

response bounds on the transfer functions from w1 and w2 to z1:
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The optimized controller has high order

Recall that C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s) with Q(s) =

∑N
k=0 Qkφ k(s).

Hence the controller order will grow with the number of basis functions φ k
and their complexity.

However, in the DC-servo example, both the Bode diagram and pole-zero

diagram of the controller indicate that cancellations can be done to simplify

the controller.
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Controllability and Observability

The controllability Gramian S =
∫∞
0 e

AtBBT eA
T tdt can be computed

by solving the linear system of equations

AS+ SAT + BBT = 0

The observability Gramian O =
∫∞
0 e

AT tCTCeAtdt can be computed

by solving the linear system of equations

ATO + OA+ CTC = 0

We want to remove states that are either poorly controllable or poorly

observable.
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Gramians, looking back

ẋ = Ax + Bu

y= Cx + Du x(t) = eAtx(0)+

∫ t

0

eA(t−τ )Bu(τ )dτ

—————————————————

Impulse response from zero intial condition: ui(t) = δ (t), x(0) = 0

xi(t) = e
AtBi

X (t) =
[
x1 x2 ⋅ ⋅ ⋅ xn

]
= eAtB

Sx=̂

∫ ∞

0

X (t)X T(t) dt =

∫ ∞

0

eAtBBT eA
T t dt

—————————————————

Output from u " 0 (only initial state x(0) = x0)

y(t) = Cx(t) = CeAtx0

∫ ∞

0

y(t)T y(t)dt =

∫ ∞

0

xT0 e
AT tCTCAtx0dt =̂ xT0 Oxx0
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Balanced Realizations

For a stable system (A, B,C) with gramians Sx and Ox, the variable

transformation ξ = Tx gives the new state matrices Â = TAT−1,

B̂ = TB, Ĉ = CT−1 and the new gramians

Sξ =

∫ ∞

0

eÂt B̂ B̂T eÂ
T tdt =

∫ ∞

0

TeAtBBT eA
T tTTdt = TSxT

T

Oξ =

∫ ∞

0

eÂ
T tĈT ĈeÂtdt =

∫ ∞

0

T−T eAtCTCeA
T tT−1dt = T−TOxT

−1

A particular choice of T gives Sξ = Oξ =




σ 1 0

. . .

0 σ n




︸ ︷︷ ︸
Σ

The corresponding realization
{

ξ̇ = Âξ + B̂u

y= Ĉx

is called a balanced realization.
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Hankel singular values

Notice that




σ 21 0

. . .

0 σ 2n


 = (TSxTT)︸ ︷︷ ︸

Σ

(T−TOxT
−1)︸ ︷︷ ︸

Σ

= TSxOxT
−1

so the diagonal elements are the eigenvalues of SxOx, independently

of coordinate system. The numbers σ 1, . . . ,σ n are called the Hankel

singular values of the system.

A small Hankel singular value corresponds to a state that is both

weakly controllable and weakly observable. Hence, it can be truncated

without much effect on the input-output behavior.
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Model reduction by balanced truncation

Consider a balanced realization[
ξ̇1
ξ̇2

]
=

[
A11 A12
A21 A22

] [
ξ1
ξ2

]
+

[
B1
B2

]
u Σ =

[
Σ1 0

0 Σ2

]

y=
[
C1 C2

] [
ξ1
ξ2

]
+ Du

with the lower part of the gramian being Σ2 =




σ r+1 0

. . .

0 σ n


.

Replacing the second state equation by ξ̇2 = 0 gives the relation

0 = A21ξ1 + A22ξ2 + B2u. The reduced system
{

ξ̇1 = (A11 − A12A
−1
22 A21)ξ1 + (B1 − A12A

−1
22 B2)u

yr = (C1 − C2A
−1
22 A21)ξ1 + (D − C2A

−1
22 B2)u

satisfies the error bound

qy− yrq2
quq2

≤ 2σ r+1 + ⋅ ⋅ ⋅+ 2σ n
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Example 1

Original system:
1− s

s6 + 3s5 + 5s4 + 7s3 + 5s2 + 3s+ 1

Hankel singular values:

Sigma = [1.9837 1.9184 0.7512 0.3292 0.1478 0.0045]

Reduced system:

0.3717 s^3 - 0.9682 s^2 + 1.14 s - 0.5185

-----------------------------------------

s^3 + 1.136 s^2 + 0.825 s + 0.5185

Bode Magnitude Diagram

Frequency (rad/sec)
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Example 2 — Heat Exchanger

VC
dTC

dt
= fC(TCi − TC) + β (TH − TC) (cold side)

VH
dTH

dt
= fH(THi − TH) − β (TH − TC) (hot side)

u1 = TCi is the in-flow temperature on the cold side

x1 = TC is the out-flow temperature on the cold side

u2 = THi is the in-flow temperature on the hot side

x2 = TH is the out-flow temperature on the hot side

Numerical values:

ẋ =

[
−0.21 0.2

0.2 −0.21

]
x +

[
0.01 0

0 0.01

]
u

y= x

Automatic Control LTH, HT2015 FRTN10 Multivariable Control, Lecture 14



Example 2 — Heat Exchanger

A state transformation ξ1 = −7.07(x1 + x2), ξ2 = 7.07(x1 − x2)
gives the balanced realization

ξ̇ =

[
−0.01 0

0 −0.41

]
ξ + 0.0707

[
−1 −1
1 −1

]
u

y= 0.0707

[
−1 1

−1 −1

]
ξ

the common controllability/observability matrix

Sξ = Oξ =

[
0.5 0

0 0.0122

]

and the reduced model

ξ̇1 = −0.01ξ1 − 0.0707
[
1 1

]
u

y= −0.0707

[
1

1

]
ξ1 + 0.0122

[
1 −1
−1 1

]
u
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DC-servo again

To simplify the controller, we would like to remove states that have little

influence on the input-output relationship, i.e. states that are poorly

controllable or poorly observable.

For this, we will compute the controllability gramian and the

observability gramian. However, these are defined only for stable

systems. Hence the integrator needs to be treated separately:

Copt(s) = Cstab(s) −
6.17

s

For Cstab(s) the gramians have eigenvalues

eig(ConGram) = [0.0933 0.2972 0.9417 5.9373 50.0472]

eig(ObsGram) = [0.0291 0.0913 0.2964 1.8811 17.6379]

Three out of five states are poorly controllable and three are weakly

observable. This can be used for reduction!
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Reducing the DC-servo Controller

Recall the Bode plot of the optimized controller Copt(s):
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The Hankel singular values of Cstab(s) = Copt(s) +
6.17
s

are

Sigma = [16.0768 2.2306 0.7023 0.1994 0.0896]

How many states need to be kept in Cstab(s)?
What kind of controller remains?
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Are all frequencies equally important?

The error bound

max
ω
pG(iω ) − Gr(iω )p = sup

u

qy− yrq2
quq2

≤ 2σ r+1 + ⋅ ⋅ ⋅+ 2σ n

emphasizes all frequencies equally, but comparing a controller C(s)
with a reduced controller Cr(s) in closed loop operation gives

pP(I + CP)−1C − P(I + CrP)
−1Crp ( pP(I + CP)

−1(C − Cr)p

Hence it is interesting to minimize the frequency weighted error

max
ω

∣∣∣W(iω )[C(iω ) − Cr(iω )]
∣∣∣

where W(iω ) = P(iω )(I + C(iω )P(iω ))−1.
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Frequency weighted balanced truncation

For model reduction with the aim to minimize

max
ω

∥∥∥Wo(iω )[G(iω ) − Gr(iω )]Wi(iω )
∥∥∥

where

Wi(s) = Ci(sI − Ai)
−1Bi + Di G(s) = C(sI − A)−1B + D Wo(s) = Co(sI − Ao)

−1Bo + Do

find extended gramians by solving

[
A BCi
0 Ai

] [
S S12
ST12 S22

]
+

[
S S12
ST12 S22

] [
A BCi
0 Ai

]T
+

[
BDi
Bi

] [
BDi
Bi

]T
= 0

[
A 0

BoC Ao

]T [
O O12
OT12 O22

]
+

[
O O12
OT12 O22

] [
A 0

BoC Ao

]
+

[
CTDTo
DTo

] [
DoC Do

]
= 0

then change coordinates to make S and O equal and diagonal before

truncating the realization of G(s) to get Gr(s) as before.
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Summary

Low order controllers could be desirable to meet constraints on

speed and memory.

Balanced realizations can reveal less important states

Good theoretical error bounds

Frequency weighting essential for closed loop performance

Reduction of unstable controllers not treated here
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Overview
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