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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
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Lecture 14: Controller simplification

e Model reduction by balanced truncation
o Application to controller simplification

o Frequency weighted balanced truncation

Model reduction by balanced truncation is described in Glad/Ljung,
section 3.6.
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Example — DC-motor
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We previously minimized [0 G, (i0) G, (i@)*d® subject to step
response bounds on the transfer functions from w; and ws to z1:
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The optimized controller has high order

Recall that C(s) = [I — Q(s)Pyu(s)]_lQ(s) with Q(s) = S50 Qrox(s).

Hence the controller order will grow with the number of basis functions ¢,
and their complexity.

However, in the DC-servo example, both the Bode diagram and pole-zero
diagram of the controller indicate that cancellations can be done to simplify
the controller.

Bode Diagram
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Controllability and Observability

The controllability Gramian S = [ ¢4/ BBTeA"td¢ can be computed
by solving the linear system of equations

AS+SAT + BBT =0

The observability Gramian O = [¢° eA"*CT CeAtdt can be computed
by solving the linear system of equations

AToO+0A+CTCc =0

We want to remove states that are either poorly controllable or poorly
observable.
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Gramians, looking back

% =Ax+ Bu .
y=Cx+ Du x(t) = eAtx(0)+/ A9 Bu(r)dr
0
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Gramians, looking back

% =Ax+ Bu ¢
Y= Cx + Du 2(0) = Ma(0)+ [ A Bu(r)ds
0

Impulse response from zero intial condition: u;(¢) = 6(t), x(0) = 0
xi(t) = e*'B;
X(t)=[x1 x2 - x, =eB

sxe/ X(t)XT(t)dtz/ eA'BBT A" dt
0 0
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Gramians, looking back

% =Ax+ Bu ¢
Y= Cx + Du 2(0) = Ma(0)+ [ A Bu(r)ds
0

Impulse response from zero intial condition: u;(¢) = 6(t), x(0) = 0
xi(t) = e*'B;
X(t)=[x1 x2 - x, =eB

sxe/ X(t)XT(t)dtz/ eA'BBT A" dt
0 0

Output from u = 0 (only initial state x(0) = x)
y(t) = Cx(t) = Celxg

/ y(t)Ty(t)dtz/ xgeATtCTCAtxodt = x10.x
0 0
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Balanced Realizations

For a stable system (4, B, C) with gramians S, and O.. the variable
transformation & = Tx gives the new state matrices A =TAT,
B =TB,C = CT~! and the new gramians

S = / A'BBTeAtdt = / TeA BBT AT dt = TS, T7
0 0

O: = / ATCT Celtdt = / T-TeACT CeA™ T 1dt = T-70, T}

0 0
01 0
A particular choice of T' gives Sg = O¢ =
0 On
| ——
2,

The corresponding realization
E= Kﬁ + Bu
y=Cx

is called a balanced realization.
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Hankel singular values

Notice that
o} 0
= (TS, T (T~ 70, T71) = TS,0, T~
0 o2 3 2

so the diagonal elements are the eigenvalues of S, O,, independently
of coordinate system. The numbers ¢1,..., 0, are called the Hankel
singular values of the system.

A small Hankel singular value corresponds to a state that is both
weakly controllable and weakly observable. Hence, it can be truncated
without much effect on the input-output behavior.
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Model reduction by balanced truncation

Consider a balanced realization

& A Al |& By X1 O
[52 Agy Ag| |& By|" 0 X
yz[cl 02} ? + Du
2
Or+1 0
with the lower part of the gramian being Xo = [ ] .
0 On

Replacing the second state equation by 52 = 0 gives the relation
0 = Ag1&1 + Ageés + Bou. The reduced system

{51 = (A11 — A12A55 Ag1)é1 + (Br — A1pAZ) Bo)u
Vr = (Cl ] C2A2_21A21)§1 + (D = CQA2_21B2)U
satisfies the error bound

lly — vrll2
el
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1—s
Original system:
' y s +3s5+ 55t +7s3+552+3s+1
Hankel singular values:

Sigma = [1.9837 1.9184 0.7512 0.3292 0.1478 0.0045]

Reduced system:

0.3717 s73 - 0.9682 s”2 + 1.14 s - 0.5185

Magiude (abs)
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Example 2 — Heat Exchanger

Ve d;’;c = fe(Te, = Te) + B(Tu — Tc) (cold side)
dT
Ve dtH = fo(Tw, — Tu) — B(Tu —Tc)  (hotside)

= T, is the in-flow temperature on the cold side
x1 = T¢ is the out-flow temperature on the cold side
ug = Ty, is the in-flow temperature on the hot side
x9 = Ty is the out-flow temperature on the hot side

Numerical values:

_ 0 21 ot 0.01 O "
B —O 21 0 0.01
x
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Example 2 — Heat Exchanger

A state transformation &1 = —7.07(x1 + x2), &2 = 7.07(x1 — x2)
gives the balanced realization

¢ - [—0.01 0

- 0 —0.41 -1

£ 40.0707 [_11 _1] u

-1 1
y = 0.0707 l_l _11 &
the common controllability/observability matrix

05 0
Ty g [0 0.0122]

and the reduced model

& = —0.01& — 0.0707 [1 1] u

y =—0.0707 [i

1 -1
§1+0.0122[ ) 1]u
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To simplify the controller, we would like to remove states that have little
influence on the input-output relationship, i.e. states that are poorly
controllable or poorly observable.

For this, we will compute the controllability gramian and the
observability gramian. However, these are defined only for stable
systems. Hence the integrator needs to be treated separately:

6.17
Copt (3) = Cstab (3) — T

For Csan(s) the gramians have eigenvalues

eig(ConGram)
eig(ObsGram)

[0.0933 0.2972 0.9417 5.9373 50.0472]
[0.0291 0.0913 0.2964 1.8811 17.6379]

Three out of five states are poorly controllable and three are weakly
observable. This can be used for reduction!



Reducing the DC-servo Controller

Recall the Bode plot of the optimized controller Cop(s):

Bode Diagram
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The Hankel singular values of Cean(s) = Copt(s) + 227 are
Sigma = [16.0768 2.2306 0.7023 0.1994 0.0896]

How many states need to be kept in Cstap(s)?
What kind of controller remains?
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Are all frequencies equally important?

The error bound

ly — ¥rll2

max |G(iw) — Gr(iw)| = sup el

<20,41 4+ 20,

emphasizes all frequencies equally, but comparing a controller C(s)
with a reduced controller C;(s) in closed loop operation gives

|P(I + CP)"1C — P(I + C.P)"1C.| ~ |P(I + CP)"1(C - C)|
Hence it is interesting to minimize the frequency weighted error
max | W (i0)[C(io) — C,(i0)]|

where W(iw) = P(iw)(I + C(iw)P(iw))~ .
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Frequency weighted balanced truncation

For model reduction with the aim to minimize
max HWo(ia))[G(iw) - G,(iw)]Wi(iw)H
[0)
where
Wi(s) = Ci(sI —A;)'B;+D; G(s)=C(sI—A)'B+D W,(s)=Cy(sI —A,)"'B, + D,

find extended gramians by solving
A BG|[S Su],[S sSu][a BCiT+ BD;| [BD)]" _
0 A ||S, Sw|TI[SL Swu||0 A B || B | =
T

A 0 0 Oy O Op||A 0 C'DS _

[BDC AJ [OITZ @J*{O{Z OZJ [BOC AJ*[ pr’ | [PC Do) =0

then change coordinates to make S and O equal and diagonal before
truncating the realization of G (s) to get G (s) as before.
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Summary

©

Low order controllers could be desirable to meet constraints on
speed and memory.

@ Balanced realizations can reveal less important states

@ Good theoretical error bounds

@ Frequency weighting essential for closed loop performance
@ Reduction of unstable controllers not treated here
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Overview

Multivariable Control - Lectures

The seminar slides will be handed out during the lectures, and the available versions below are
subject to changes until the lecture is given (indicated by red or green bullet).

@ L1: Introduction (slides, 8-slides) and (notes) [G&L: ch 1.1-1.5]

@ | 2: Stability and robustness (slides, 8-slides, m-file) and (notes) (G&L: ch 1.6, 2.1-2.5, 3.1, 3.4, 3.5]

@ | 3: Specifications and disturbance models (slides, 8-slides) and (notes) [G&L: ch'5.1-56, 6.1-6.3]

@ L4: Control synthesis in frequency domain (slides, 8-slides) and (notes) [G&L: ch6.4-6.6 8.1-8.2]

@ L5: Case study DVD-player (slides, 8-slides) and (notes)

@ L6: Controllability, observability and multivariable zeros (slides, 8-slides) and (notes) [GaL: ch3.2-.3.3,
3.5-3.6]

@ | 7: Fundamental limitations (slides, 8-slides) and ( notes) [G&L: ch 7.2-7.9] (optional reading: Bicycle dynamics)
@ 18: Decentralized control (slides, 8-slides) (notes) [G&aL: ch g3, 8.5]

@ | 9: Linear quadratic optimal control (slides, 8-slides) [G&L: 9.1-9.4,5.7]

@ | 10: Optimal output feedback (LQG) (slides, 8-slides) [G&L:9.1-9.4.5.7]

@ L11: More on LQG (slides, 8-slides) [G&L: 10.2]

@ 1 12: Internal Model Control, Youla parametrization (slides, 8-slides) [G&L: 8.4

@ L13: Synthesis by convex optimization (slides, 8-slides) and (notes) [an excellent book on convex optimization
is Convex Optimization --- Boyd and Vandenberghe. The boak is free for download and the first part of this lecture is based on the
book introduction. The control synthesis part is covered by a tutorial paper.]

@ | 14: Controller simplification (slides, 8-slides) [G&aL: 3.5]

@ L15: Overview of the course (slides)
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