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Idea for lecture 12-14:
The choice of controller generally corresponds to finding Q(s), to get
desirable properties of the map from w to z:

z w

%Pzw(s) - qu(s)Q(S)wa(S)

Once Q(s) is determined, a corresponding controller is derived.

Lecture 13: Synthesis by Convex Optimization

e Example: Spring-mass system
o Introduction to convex optimization
o Controller optimization using Youla parametrization

o Examples revisited

Most of this lecture is based on source material from Boyd,
Vandenberghe and coauthors. See
http://www.control.lth.se/Education/EngineeringProgram/FRTN10.html

Example: Spring-mass System

F d1 d2
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Position of the first mass, d,
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The step response is not within its upper and lower bounds.
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Control Signal, u(t)

The step input stays within its amplitude bound |u(t)| < 6.
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Sensitivity Function S

Magnitude (abs)
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Frequency (radls)

The sensitivity does not satisfy the magnitude bound |S| < 1.3
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Least-squares

minimize ||Az — b||3
solving least-squares problems
e analytical solution: z* = (ATA)~1ATb
e reliable and efficient algorithms and software

e computation time proportional to n2k (A € R**™); less if structured

e a mature technology

using least-squares

o least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear program (LP)

minimize ¢’z +d
subject to Gz < h
Az =10
e convex problem with affine objective and constraint functions

o feasible set is a polyhedron

Convex optimization problems 417

Linear programming

minimize ¢’z
subjectto afz <b;, i=1,....m
solving linear programs
e no analytical formula for solution
e reliable and efficient algorithms and software
e computation time proportional to n?m if m > n; less with structure

e a mature technology
using linear programming

e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving ¢;- or {,.-norms, piecewise-linear functions)
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Convex optimization problem

minimize  fo(x)
subject to  fi(z) <b;, i=1,...,m

e objective and constraint functions are convex:

filaz + By) < afi(x) + Bfi(y)
fat+pf=1,a>0,8>0

e includes least-squares problems and linear programs as special cases
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solving convex optimization problems

no analytical solution

reliable and efficient algorithms

computation time (roughly) proportional to max{n?, n?*m, F}, where F
is cost of evaluating f;'s and their first and second derivatives

almost a technology

using convex optimization

e often difficult to recognize
e many tricks for transforming problems into convex form

e surprisingly many problems can be solved via convex optimization
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Brief history of convex optimization

theory (convex analysis): cal900-1970

algorithms

e 1947: simplex algorithm for linear programming (Dantzig)

e 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )
e 1970s: ellipsoid method and other subgradient methods

e 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

e late 1980s—now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications
o before 1990: mostly in operations research; few in engineering

e since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . . . ); new problem classes
(semidefinite and second-order cone programming, robust optimization)
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Examples on R

convex:

e affine: ax +bon R, for any a,b € R

e exponential: e®*, for any a € R

e powers: ¥ on Ry, fora>1ora<0

o powers of absolute value: |z|” on R, for p > 1

e negative entropy: xlogx on Ry

concave:
o affine: az + b on R, for any a,b € R
e powers: z*on R4, for0<a <1

o logarithm: logz on Ry

Convex functions

33

Examples on R" and R™*"

affine functions are convex and concave; all norms are convex

examples on R"
o affine function f(z) =a’z +b

o norms: ||z, = (327, [2if?)'/7 for p > 1; ||l = maxy, ||

examples on R™*™ (m x n matrices)

o affine function

FX) =tr(ATX) + b= Ay Xi;+b

i=1 j=1
e spectral (maximum singular value) norm

f(X) = HXH2 = JmaX<X) = ()‘mRX(XTX))I/Q
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Convex optimization problem

standard form convex optimization problem

minimize  fo(z)
(

subject to  f;(x) <0,
afz =b;,
o fo. fi, ..., fm are convex; equality constraints are affine
e problem is quasiconvex if fq is quasiconvex (and f1, ..., fm convex)

Quadratic program (QP)

minimize  (1/2)2T Pz + ¢z + 7
subject to Gz < h
Az =0
e P €S, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron
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Second-order cone programming

minimize Tz
subject to [|Aix +bilo < cfx+d;, i=1,...,m
Fr=g

(Ai I Rn,xn' Fe Rpxn,)

Semidefinite program (SDP)

minimize ¢
subject to @1 Fy + xoFs + -+, F, + G X0
Az =0

with F;, G € §*

e inequality constraint is called linear matrix inequality (LMI)

Newton’s method

Barrier method for constrained minimization

given a starting point * € dom f, tolerance € > 0.
repeat
1. Compute the Newton step and decrement.
Azy = =V2f(2) 'V (), A= Vf(2)TVif(z) 'V f(z).
2. Stopping criterion. quit if >\2/2 <e
3. Line search. Choose step size t by backtracking line search.
4. Update. x := © + tAxy.

minimize  fo(x)
subjectto  fi(x) <0 1=1,....,m
Ax=0b

approximation via logarithmic barrier

minimize fo(x) — (1/t) 7", log(~ fi(x))

subject to Az =10

e an equality constrained problem

o fort >0, —(1/t)log(—u) is a
smooth approximation of 7_

e approximation improves as t — oo

Interior-point methods
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Scheme for numerical optimization of @

Given some fixed set of basis function @o(s), ..., dn(s), we will
search numerically for matrices @y, . .., @y such that the closed loop
transfer matrix G, (s) satisfies given specifications when

N
sz(s) = Pzw(s) - qu(S)Q(S)wa(S) and Q(S) = Z Qk¢k(s)
k=0

Once Q(s) has been determined, we will recover the desired
controller from the formula

C(s) = [I - Q(s)Pyu(s)] ' Q(s)

It is possible to choose the sequence ¢ (s), #1(s), 2(s), . .. such that
every stable @ can be approximated arbitrarily well. Hence, in
principle, every convex control design problem can be solved this way.

But, what specifications give a convex design problem?

Pulse response parameterization

We will use an intuitively simple parametrization of @(s) where each
parameter @, represents a point on the corresponding impulse
response in time domain.
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Mini-problem

Which specifications are convex constraints on @p?

-

o o A W DN

. Stability of the closed loop system
. Lower bound on step response from w; to z; at time ¢;

. Upper bound on step response from w; to z; at time ¢;

. Lower bound on Bode amplitude from w; to z; at frequency w;
. Upper bound on Bode amplitude from w; to z; at frequency ®;

. Interval bound on Bode phase from w; to z; at frequency @;

Lower bound on step response
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The step response depends linearly on @y, so every time ¢, with a
lower bound gives a linear constraint.

Upper bound on step response
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Every time ¢, with an upper bound also gives a linear constraint.

Upper bound on Bode amplitude

Bode Magnitude Diagram

Magnitude (abs)

10" 10"

Frequency (radisec)

An amplitude bound |G (iw;)| < ¢ is a quadratic constraint.

Lower bound on Bode amplitude

Magritude (abs)

Ga(iw)

Bode Magnitude Diagram

Gb(iw)

Frequency (radisec)

An lower bound |G (i;)| is a non-convex quadratic constraint. This
should be avoided in optimization.




Synthesis by convex optimization

A general control synthesis problem can be stated as a convex
optimization problem in the variables @y, ..., &,. The problem has a
quadratic objective, with linear and quadratic constraints:

Q(io)

inimize P (i®) + Pay (i Q10%(i®) Py (iw)|2dew  § quadratc objective
M b ),
%

step response w; — z; is smaller than f;;, at time t;,

- . linear constraints
step response w; — z; is bigger than g;;, at time ¢,

subject to

Bode magnitude w; — z; is smaller than h; j;, at @}, } quadratic constraints

Once the variables @y, . .., @, have been optimized, the controller is
obtained as C(s) = [T — Q(s)Pyu(s)] " Q(s)
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Example — DC-motor

wli TZ2

=1

The transfer matrix from (w1, wg) to (21, 22) is

P —PC
sz(s) — |:1+PC 1+PC:|

1 o
I+PC  I7PC
with P(s) = %. We will choose C(s) to minimize

trace / Go(i0)G o (iw)*dw

subject time-domain bounds.

DC-servo with time domain bounds

Input step disturbance Reference step

Step Response

What if we remove the upper bound on the response to input
disturbances ?

DC-servo with time domain bounds

Input step disturbance Reference step

Stop Resporse Step Response.

Ampiuge.

i (s0c) Time (s0c)

The integral action in the controller is lost, just as in lecture 11!

Summary

» There are efficient algorithms for convex optimization, e.g.
> Linear programming (LP)
> Quadratic programming (QP)
» Second order cone programming (SOCP)
> Semi-definite programming (SDP)
» The Youla parametrization allows us to use these algorithms for
control synthesis

» Resulting controllers have high order. Order reduction will be
studied in the next lecture.
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