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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach
12 Youla parameterization, Internal Model Control
13 Synthesis by convex optimization
14 Controller simplification
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Lecture 12

The Youla Parameterization

Internal Model Control

Dead Time Compensation

Section 8.4 in Glad/Ljung.
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The Youla parameterization (Q parameterization)

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

measurements y

distubances w

Idea for lectures 12–14:
The choice of controller corresponds to designing a transfer matrix
Q(s), to get desirable properties of the following map from w to z:

z w

Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) is determined, the corresponding controller can be found.
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The Youla Parameterization

[
Pzw Pzu
Pyw Pyu

]

−C(s)

✛ ✛

✛

✲

u

z

y

w

The closed loop transfer matrix from w to z is

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s)

where

Q(s) = C(s)
[
I + Pyu(s)C(s)

]−1

C(s) = Q(s) + Q(s)Pyu(s)C(s)

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)
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Closed loop maps for stable plants

Suppose the original plant P is stable. Then

Stabilty of Q(s) implies stability of Pzw(s) − Pzu(s)Q(s)Pyw(s)

If Q = C
[
I + PyuC

]−1
is unstable, then the closed loop is

unstable.
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Closed loop maps for unstable plants

ũ

w

y

z

P0(s)

−C0(s)

−C1(s)

[
Pzw Pzu
Pyw Pyu

]

−C1(s)

✛ ✛

✛

✲

ũ

z

y

w

If P0(s) is unstable, let C0(s) be some stabilizing controller. Then the
previous argument can be applied with Pzw, Pzu, Pyw, and Pyu
representing the stabilized closed-loop system.
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Next lecture: Synthesis by convex optimization

A general control synthesis problem can be stated as a convex
optimization problem in the variable Q(s). The problem could have a
quadratic objective, with linear/quadratic constraints, e.g.:

Minimize
∫ ∞

−∞
pPzw(iω ) + Pzu(iω )

Q(iω )︷ ︸︸ ︷∑

k

Qkφ k(iω ) Pyw(iω )p
2dω

}
quadratic objective

subject to
step response wi → zj is smaller than fi jk at time tk
step response wi → zj is bigger than �i jk at time tk

}
linear constraints

Bode magnitude wi → zj is smaller than hi jk at ω k
}

quadratic constraints

Here Q(s) =
∑
k Qkφk(s), where φ1, . . . ,φm are some fixed “basis

functions”, and Q0, . . . ,Qm are optimization variables. Once Q(s)
has been determined, the controller is obtained as
C(s) =

[
I − Q(s)Pyu(s)

]−1
Q(s)
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Example — DC-motor

+

+

+

+

20
s(s+1)C(s)

−1

z2w1

w2

z1

The transfer matrix from (w1,w2) to (z1, z2) is

Gzw(s) =




P
1+PC

−PC
1+PC

1
1+PC

−C
1+PC




where P(s) = 20
s(s+1) . How to obtain stable Pzw, Pzu, Pyw, Pyu to get

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s) ?
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Stabilizing nominal feedback for DC-motor

w1

w2

z1

z2

y u



P 0 P

I 0 I

P I P




−C(s)

The plant P(s) = 20
s(s+1) is not stable, so write

C(s) = C0(s) + C1(s)

where C0(s) " 1 is a stabilizing controller.
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Redraw diagram for DC motor example

ũ

w1

w2

z1

z2

y

[
P 0 P

I 0 I

P I P

]

−1

−C1(s)

y ũ

[
Pc −Pc Pc
1− Pc Pc − 1 1− Pc
Pc 1− Pc Pc

]

−C1(s)

Gzw(s) =

[
Pc −Pc
1− Pc Pc − 1

]
+

[
Pc
1− Pc

]
Q

[
Pc 1− Pc

]

where Pc(s) = (1+ P(s))−1P(s) =
20

s2+s+20
is stable.
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DC motor example – final controller

Once Q(s) has been designed, the controller is obtained as

C1 = (I − QPc)
−1Q

C = C0 + C1
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Outline

○ Youla Parameterization

• Internal Model Control

○ Dead Time Compensation
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Internal Model Control

−1

Q(s)

P0(s)

P(s)
r

u

y

+

−

Plant

Controller

Feedback is used only as the real process deviates from P(s).

The transfer function Q(s) defines how the desired input depends on
the reference signal.

When P = P0, the transfer function from r to y is P(s)Q(s).
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Two equivalent diagrams

−1

Q

P0

P
r

u
y

+
−

−1

P0
r u y

Q
1−QP
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Internal Model Control — Strictly proper plants

When P = P0, the transfer function from r to y is P(s)Q(s).

For perfect reference following, one would like to put Q(s) = P(s)−1.
For several reasons this is not possible:

If P(s) is strictly proper, the inverse would have more zeros than
poles. Instead, one could choose

Q(s) =
1

(λs+ 1)n
P(s)−1

where n is large enough to make Q proper. The parameter λ
determines the speed of the closed-loop system.
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Internal Model Control — Zeros and delays

Other reasons why Q(s) = P(s)−1 is often not possible:

If P(s) has unstable zeros, the inverse would be unstable.
Options:

Remove every unstable factor (−β s+ 1) from the plant
numerator before inverting
Replace every unstable factor (−β s+ 1) with (β s+ 1). With this
option, only the phase is modified, not the amplitude function.

If P(s) includes a time delay, its inverse would have to predict the
future. Instead, the time delay is removed before inverting.
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Design Example 1 — First order plant model

P(s) =
1

τ s+ 1

Q(s) =
1

λs+ 1
P(s)−1 =

τ s+ 1

λs+ 1

C(s) =
Q(s)

1− Q(s)P(s)
=

τ s+1
λs+1

1− 1
λs+1

=
τ

λ

(
1+

1

sτ

)

︸ ︷︷ ︸
PI controller

(This way of tuning a PI controller is known as lambda tuning)
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Design Example 2 — Non-minimum phase plant

P(s) =
−β s+ 1

τ s+ 1

Q(s) =
(−β s+ 1)

(β s+ 1)
P(s)−1 =

τ s+ 1

β s+ 1

C(s) =
Q(s)

1− Q(s)P(s)
=

τ s+1
β s+1

1− (−β s+1)
(β s+1)

=
τ

2β

(
1+

1

sτ

)

︸ ︷︷ ︸
PI controller
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Outline

○ Youla Parameterization

○ Internal Model Control

• Dead Time Compensation
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Dead Time Compensation

Consider the plant model

P(s) = P1(s)e
−sτ

Let C0 = Q/(1− QP1) be the controller we would have used without
delays. Then Q = C0/(1+ C0P1).

The rule of thumb tell us to use the same Q also for systems with
delays. This gives

C(s) =
Q(s)

1− Q(s)P1(s)e−sτ
=

C0/(1+ C0P1)

1− e−sτ P1C0/(1+ C0P1)

C(s) =
C0(s)

1+ (1− e−sτ )C0(s)P1(s)

This modification of the C0(s) to account for time delays is known as a
Smith predictor.
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Smith Predictor

−

−

C0(s) P1e
−sτ

P1e
−sτ

P1

y1

y

y2

+

+

r u

PlantController

The Smith predictor uses an internal model of the process (with and
without the delay). Ideally Y and Y1 cancel each other and only
feedback from Y2 “without delay” is used.

Automatic Control LTH, 2015 FRTN10 Multivariable Control, Lectur e 12



Smith Predictor

−

−

C0(s) P1e
−sτ

P1e
−sτ

P1

y1

y

y2

+

+

r u

PlantController

Y(s) = e−sτ
C0(s)P1(s)

1+ C0(s)P1(s)
R(s)

Delay eliminated from denominator!

Reference response greatly simplified!
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Smith Predictor — A Success Story!

−

−

C0(s) P1e
−sτ

P1e
−sτ

P1

y1

y

y2

+

+

r u

PlantController

Numerous modifications

Many industrial applications

Otto J.M. Smith listed in the ISA “Leaders of the Pack” list (2003) as
one of the 50 most influential innovators since 1774.
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Example: Dead Time Compensation

Smith predictor (thick) and standard PI controller (thin)

Output

Input

Setpoint
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Youla parameterization revisited

The Youla parameterization:

P

Q(s)

w z

u y

er

Cnom

where Cnom stabilizes the [P,C]-system and
Q(s) is any stable transfer function.
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Nominal Controller: State Feedback from Observer

Linear system ẋ = Ax + Bu+ Bww, y= Cx + Dww

Observer

L C∑ ∑

u
u

y
y

e

e

r

r

x̂Cnom

+

+−

−

with observer
˙̂x = Ax̂ + Bu+ K e

u = r − Lx̂

e = y− Cx̂
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Summary

Q(s) can be designed by hand for simple plants
Internal Model Control
Warning: Cancellation of slow poles gives poor disturbance
rejection

Q(s) can be found via convex optimization, also for multivariable
plants (see Lecture 13)
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