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10. Optimal output feedback (LQG)
11. More on LQG
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Recall the main result of LQG

Given white noise (v1,vg) with intensity R and the linear plant

{a’c(t) = Ax(t) + Bu(t) + Nvy (k) R |:R1 R12:|
y(t) = Cax(t) +v2(?) " [RL, Re

consider controllers of the form u = —Lx with
%f = AX + Bu + K[y — Cx]. The stationary variance

E (xTle +2xT Qrou + uTQzu)

is minimized when
K = (PC" + NR1p)R;' L =Q;'(SB+Qu)"
0=Q;+ATS +SA—(SB + Q12)Q;(SB + Q1)"
0=NR;NT + AP + PAT — (PCT + NR15)R;*(PCT + NRy)T

The minimal variance is

tr(SNR1NT) + tr[PLT(BTSB + Q) L]

LQG Example 1 — Flexible servo
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Introduce state variables x1 = y1, X2 = y1, X3 = Y2, X4 = Yo

Open loop response
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Choice of minimization criterion

How choose @1, @2, @12 in the cost function

xTle + 2xTQ12u + uTQzu

Rules of thumb:

> Put @12 = 0 and make @1, Q2 diagonal

» Make the diagonal elements equal to the inverse value of the
square of the allowed deviation:

x(0)T Qua(t) + u(t)T Qau(2)

(a0’ @\ (ui(t))” U ()
= (32) e (R (52) oo (i

Penalize velocity error or position error?

Minimize E[xa(k)? + x4(k)? + u(k)?] or Exi(k)? +x3(k) +u(k)?] ?
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When only velocity is penalized, a static position error remains

Position error control

Response of x;1(k), x3(k),u(k) = —Lx(k) to impulse disturbance.
@ = diag{q,0,¢,0} (¢ = 0,1,10,100), Q12 =0, @2 = 1.
Large g = fast response but large control signal.
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Position+velocity error control

Real and estimated states

To reduce oscillations, penalize also velocity error. Comparision
between @1 = diag{100,0,100,0} and
1 = diag{100, 100, 100,100}.
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A Kalman filter estimates the states using measured positions.

Miniproblem

What happens if

» we reduce R; by 10000?
» we increase the upper left corner of Ry by 10000?
» we increase the lower right corner of Rg by 10000?
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When the expected process disturbances are small, the observer will
be slower.

Increased the upper left corner of Ro
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The measurement y; is not trusted, so the estimate of x; slows down.

Increased lower right corner of Ry
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The measurement ys is not trusted, so the estimate of x3 slows down.

Recall the simple control loop

» Reduce the effects of load disturbances
>

» Reduce sensitivity to process variations

Limit the effects of measurement noise

» Make output follow command signals

Don't forget “The Gang of Four”!

Check all relevant transfer functions for robustness and signal sizes.
The input sensitivity | (I + CP)~!(iw)| is plotted below. No large
peaks, maximum=1.4.
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LQG Example 2 — DC-servo

vy i T2‘2
o) =— 2 .
T
With P(s) = %, the transfer matrix from (v1,vg) to (21, 22) is

1

P -PC
+PC  1+PC
Gn(s) = o
1+PC  1+PC

As a first (preliminary) design, we choose C(s) to minimize
o0
trace/ G (io)Gy(in) do
J =00

This minimizes E(|z1|2 + |22|2) when (v1,vg) is white noise.

LQG Design
A B N
—_——~ —~N= —~N
x1_00x1+20u+20v
do| |1 =1 |xs 0 0|t

Yy =X2 + Vg 21 = X9 Zo=u+v;
Minimization of E(|21|? + |22|2) is the LQG problem defined by
_fo o B [Ry 0] 10
Ql_{o 1} Q=1 R_{o RJ_{O 1}

Solving the Riccati equations gives the optimal controller

%,zz(A_BL)a?JrK[y—Cfl u=-Lx
where
20.0000
L =[02702 0.7298] K= {5,4031}

Bode magnitude plots
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Nongzero static gain in 17 ¢ indicates poor disturbance rejection

Integral action

To remove stationary errors in the output we penalize also z3:

U1 22
’ 20 1
kLo
> 2

The transfer matrix from (v1,vg) to (21, 29, 23) is

P —-PC
1+PC 1+PC

— | -1 _=C_
Ga(s) = 1+PC 1+PC

P —PC
s(I1+PC) s(1+PC)

Extended DC-motor model

With the model
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y=Xx2 + Uz

minimization of |x2|? + |x3] + |u|? gives the optimal controller

Bode magnitude plots after optimization
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Summary of LQG Alternative norms for optimization
controlled variables z distubances v
Advantages 1 P [
» Works fine with multivariable models
» Observer structure ties to reality measurements y control inputs
» Always stabilizing Controller
» Guaranteed robustness in state feeback case

v

Well developed theory
Disadvantages

» High-order controllers
» Sometimes hard to choose weights

LQG optimal control:
o0
Minimize / G (i0)Gy(in) do
—00

H ., optimal control:

Minimize m3x||Gz,,(ia))||




Linear Quadratic Game Problems

Notice that max, |Gz (i@)|| <y ifand only if
|ol* = 7*lol* < 0

for all solutions to the system equations.

The H,, optimal control problem with |2|2 = 7 Q1x + u” Qou can be
restated in terms of linear quadratic games of the form

minmax(x7 Q1x + uT Qau — y%v[?)
u v

These can be solved using Riccati equations, just like LQG.
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