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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

9. Linear quadratic optimal control
10. Optimal output feedback (LQG)
11. More on LQG

L12-L14 Controller optimization: Numerical approach

Recall the main result of LQG

Given white noise (v1, v2) with intensity R and the linear plant
{

ẋ(t) = Ax(t) + Bu(t) + Nv1(k)
y(t) = Cx(t) + v2(t)

R =

[
R1 R12
RT

12 R2

]

consider controllers of the form u = −Lx̂ with
d
dt x̂ = Ax̂ + Bu+ K [y− Cx̂]. The stationary variance

E
(

xT Q1x + 2xT Q12u+ uT Q2u
)

is minimized when

K = (PCT + N R12)R−1
2 L = Q−1

2 (SB + Q12)
T

0 = Q1 + AT S+ SA− (SB + Q12)Q−1
2 (SB + Q12)

T

0 = N R1 NT + AP+ PAT − (PCT + N R12)R−1
2 (PCT + N R12)

T

The minimal variance is

tr(SN R1 NT) + tr[PLT(BT SB + Q2)L]

LQG Example 1 — Flexible servo

F
m1 m2

y1 y2

d1 d2

k

m1
d2y1

dt2 = −d1
dy1

dt
− k(y1 − y2) + F(t)

m2
d2y2

dt2 = −d2
dy2

dt
+ k(y1 − y2)

Introduce state variables x1 = y1, x2 = ẏ1, x3 = y2, x4 = ẏ2

Open loop response
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Choice of minimization criterion

How choose Q1, Q2, Q12 in the cost function

xT Q1x + 2xT Q12u+ uT Q2u

Rules of thumb:

◮ Put Q12 = 0 and make Q1, Q2 diagonal

◮ Make the diagonal elements equal to the inverse value of the
square of the allowed deviation:

x(t)T Q1x(t) + u(t)T Q2u(t)

=

(
x1(t)
xmax

1

)2

+ ⋅ ⋅ ⋅+
(

xn(t)
xmax

n

)2

+

(
u1(t)
umax

1

)2

+ ⋅ ⋅ ⋅+
(

um(t)
umax

m

)2

Penalize velocity error or position error?

Minimize E[x2(k)2 + x4(k)2 + u(k)2] or E[x1(k)2 + x3(k)2 + u(k)2] ?
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When only velocity is penalized, a static position error remains

Position error control

Response of x1(k), x3(k), u(k) = −Lx(k) to impulse disturbance.
Q1 = diag{q, 0, q, 0} (q = 0, 1, 10, 100), Q12 = 0, Q2 = 1.
Large q[ fast response but large control signal.

−0.2

0

0.2

0.4

0.6

T
o:

 O
ut

(1
)

−0.2

0

0.2

0.4

0.6

T
o:

 O
ut

(2
)

0 5 10 15
−4

−3

−2

−1

0

1

T
o:

 O
ut

(3
)

Impulse Response

Time (sec)

A
m

pl
itu

de

1



Position+velocity error control

To reduce oscillations, penalize also velocity error. Comparision
between Q1 = diag{100, 0, 100, 0} and
Q1 = diag{100, 100, 100, 100}.
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Real and estimated states
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A Kalman filter estimates the states using measured positions.

Why is the transient error bigger in the right plots?

Miniproblem

What happens if

◮ we reduce R1 by 10000?

◮ we increase the upper left corner of R2 by 10000?

◮ we increase the lower right corner of R2 by 10000?

Reduced R1
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When the expected process disturbances are small, the observer will
be slower.

Increased the upper left corner of R2
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The measurement y1 is not trusted, so the estimate of x1 slows down.

Increased lower right corner of R2
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The measurement y2 is not trusted, so the estimate of x3 slows down.

Recall the simple control loop

F C P

−1

ΣΣΣ
r u

d

z

n

y

◮ Reduce the effects of load disturbances

◮ Limit the effects of measurement noise

◮ Reduce sensitivity to process variations

◮ Make output follow command signals

Don’t forget “The Gang of Four”!

Check all relevant transfer functions for robustness and signal sizes.
The input sensitivity p(I + CP)−1(iω )p is plotted below. No large
peaks, maximum=1.4.
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LQG Example 2 — DC-servo

+

+

+

+

20
s(s+1)C(s)

−1

z2v1

v2

z1

With P(s) = 20
s(s+1) , the transfer matrix from (v1, v2) to (z1, z2) is

Gzv(s) =




P
1+PC

−PC
1+PC

1
1+PC

−C
1+PC




As a first (preliminary) design, we choose C(s) to minimize

trace
∫ ∞

−∞
Gzv(iω )Gzv(iω )∗dω

This minimizes E(pz1p
2 + pz2p

2) when (v1, v2) is white noise.

LQG Design

[
ẋ1
ẋ2

]
=

A︷ ︸︸ ︷[
0 0
1 −1

] [
x1
x2

]
+

B︷ ︸︸ ︷[
20
0

]
u+

N︷ ︸︸ ︷[
20
0

]
v1

y= x2 + v2 z1 = x2 z2 = u+ v1

Minimization of E(pz1p
2 + pz2p

2) is the LQG problem defined by

Q1 =

[
0 0
0 1

]
Q2 = 1 R =

[
R1 0
0 R2

]
=

[
1 0
0 1

]

Solving the Riccati equations gives the optimal controller

d
dt

x̂ = (A− B L)x̂ + K [y− Cx̂] u = −Lx̂

where

L =
[
0.2702 0.7298

]
K =

[
20.0000
5.4031

]

Bode magnitude plots
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Nonzero static gain in P
1+PC indicates poor disturbance rejection

Integral action

To remove stationary errors in the output we penalize also z3:

+

+
+

+

20
s(s+1)C(s)

−1

z2v1

v2

z1

z3
1
s

The transfer matrix from (v1, v2) to (z1, z2, z3) is

Gzv(s) =




P
1+PC

−PC
1+PC

1
1+PC

−C
1+PC

P
s(1+PC)

−PC
s(1+PC)




Extended DC-motor model

With the model




ẋ1
ẋ2
ẋ3


 =

Ae︷ ︸︸ ︷


0 0 0
1 −1 0
0 1 0







x1
x2
x3


+

Be︷ ︸︸ ︷


20
0
0


u+

Ne︷ ︸︸ ︷


20 0
0 0
0 1




v1e︷ ︸︸ ︷[
v1
v2

]

y= x2 + v2

minimization of px2p
2 + px3p

2 + pup2 gives the optimal controller

d
dt

x̂e = (Ae − Be Le)x̂e + Ke[y− Ce x̂e] u = −Lx̂

where

Ce =
[
0.0000 1.0000 0.0000

]

Le =
[
0.3162 1.0000 1.0000

] Ke =




20.0000
5.4031
1.0000




Bode magnitude plots after optimization
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Summary of LQG

Advantages

◮ Works fine with multivariable models

◮ Observer structure ties to reality

◮ Always stabilizing

◮ Guaranteed robustness in state feeback case

◮ Well developed theory

Disadvantages

◮ High-order controllers

◮ Sometimes hard to choose weights

Alternative norms for optimization

Plant

Controller

✛ ✛

✛

✲
control inputs u

controlled variables z

measurements y

distubances v

LQG optimal control:

Minimize
∫ ∞

−∞
Gzv(iω )Gzv(iω )∗dω

H∞ optimal control:

Minimize max
ω
qGzv(iω )q
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Linear Quadratic Game Problems

Notice that maxω qGzv(iω )q ≤ γ if and only if

pzp2 − γ 2pvp2 ≤ 0

for all solutions to the system equations.

The H∞ optimal control problem with pzp2 = xT Q1x+ uT Q2u can be
restated in terms of linear quadratic games of the form

min
u

max
v
(xT Q1x + uT Q2u− γ 2pvp2)

These can be solved using Riccati equations, just like LQG.

Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

12. Internal Model Control, Youla parametrization
13. Synthesis by convex optimization
14. Controller simplification
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