Lecture 9: Linear Quadratic Control

» Dynamic Programming
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Optimal State Feedback
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Stability and Robustness

The sections 9.1-9.4 + 5.7 in the book treat essentially the same
material as we cover in lecture 9-11. However, the main derivation of
the LQG controller in appendix 9A is different.

Course outline

L1-L5 Purpose, models and loop-shaping by hand
LL6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach

L9 LQ - optimal state feedback
L10 Kalman filter - optimal state observer
LQG = LQ-design + Kalman filter
L11 more on LQG - output feedback control

L12-L14 Controller optimization: Numerical approach

Math Repetition

Suppose the matrix @ is symmetric: @ = Q7. Then

> @ > 0 means that x” Qx > O forany x # 0
» True iff all eigenvalues of @ are positive.
» We say that @ is positive definite.

» @ >0 meansthatx”Qx > Oforany x # 0
» True iff all eigenvalues of @ are non-negative.
» We say that @ is positive semidefinite.

Math Repetition

The trace of a matrix is the sum of all diagonal elements:
n
trace @ = Z Qi;
i

A useful property of the matrix trace:
trace ABC = trace CAB = trace BCA

Parseval’'s formula: Suppose that f(¢) and g(¢) have finite energy and
that their Laplacerespectively. Then

27 /_ Z £t g(H)dt = /_ Z Flio) G(io)dw

A General Optimization Setup

distubances w
e

controlled variables z
B E——
Plant

measurements y control inputs u

Controller

The objective is to find a controller that optimizes the transfer matrix
G () from disturbances w to controlled outputs z.

Lecture 9-11: Problems with analytic solutions
Lectures 12-14: Problems with numeric solutions

Thickness control in paper machine

Setpoint for good controller

Distribution
el
&

Test limit

Setpoint for poor controlle!
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Paper thickness

All paper production below the test limit is wasted.
Good control allows for lower setpoint with the same waste. The
average thickness is lower, which saves significant costs.

r

Today’s problem: State Feedback

z=(x,u) X0
- l————
Plant
state measurement x u
Controller

Minimize /O " ()" Qui() + 2x()” Quan(t) + (1) Quu(r))dt

subjectto  %(¢) = Ax(t) + Bu(t), x(0)=xo

Mini-problem

Determine ug and u; as functions of x if the objective is to minimize
x2 +xf+ud+ud
when

X1 =x0+ U

Xo =x1+ Uy

Hint: Go backwards in time.




Solution to Mini-problem

2 2 2 2 2 2 2 2

ug, u1) = x7 + x5 +uy+uj = (x0 +uo)” + ((x0 +uwo) +u1)" +upg+u

fluo, u1) = 27 + x5 +ug +uy = (xo + uo)” + ((x0 + uo) +u1) otur
X1 x1

=2x02 + (2uy + 4ug) x0 + 2uou; + 2u1? + 3uy?

%=4x0+2u1+6u0=0
17}
#=2x0+2u0+4u1=0

(Don't forget to check whether maximum or minimum...)
6 2| [uog] _ [—4x0 wo| _ —%xo o _3
o ] -] = ) - ) = e

Note: This sequence depends on the initial value only (no feedback).
For robustness it is prefererable to find a feedback solution!

Quadratic Optimal Cost

The optimal cost on the time interval [T, o] is quadratic:

. o (g)T Q1 @ x
wse=mpn [ (3] (8 &) (3]

X = Ax+ Bu
when
x(Ty) =«

Dynamic programming, Richard E. Bellman 1957

An optimal trajectory on the time in-
terval [T, T'] must be optimal also on
each of the subintervals [Ty, Ty + €]
and [T +¢,T).

Dynamic programming in linear quadratic control

x(Th) =%, x(Thi+¢)=x+(Ax+ Bu)e

s [ (3) (& &) (3)

{2 (& §) 0 L0 (& %) Q)
= mjn{ [i] ! [31;2 %1:] [i] e+ [x+ (Ax + Bu)E]TS[x + (Ax +Bu)e] }
by definition of S. Neglecting €2 gives Bellman’s equation:

0= muin [(xTle + 22T Qou + uTQ2u> + 22T S(Ax + Bu)]
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Completion of squares

The scalar case: Suppose ¢ > 0.

5 9 b2 b b
ax”® + 2bxu + cu” = x a—? x+ u+zx c u+;x

is minimized by u = — 2. The minimum is (a - b2/c> x2.

The matrix case: Suppose @, > 0. Then
2T Qux + 25T Quuu + uT Quu
= (4 Q' QLX) Qulu + Q' QLx) +27(Qr — QuQ, QL)%

is minimized by u = —Q;;1QZ, x. The minimum is

xT(Qx - quQ;lQZu)x

The Riccati Equation

Completion of squares in Bellman’s equation gives
0= muin ((xTle + 227 Qqou + uTQzu) + 2xTS(Ax + Bu))
= min (xT[Q1 + ATS + SAlx + 2xT[Q12 + SBJu + uTQzu)

=x"(Q+ATS + SA— (SB + Q12)@"(SB + Q)" )x
with minimum attained for u = —Q51(SB + Q12)7 x.
The equation

0=Q+ATS+SA— (SB + Q13)Q5'(SB + Q1)

is called the algebraic Riccati equation

Jocopo Francesco Riccati, 1676—1754
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Linear Quadratic Optimal Control

Problem:
Minimize /0 ” (x(t)Tle(t) +22(t)T Quau(t) + u(t)TQzu(t))dt
subjectto & = Ax(t) + Bu(t), x(0)=xo

Solution: Assume (A, B) controllable. Then there is a unique S > 0
solving the Riccati equation

0=Q1+ATS +SA— (SB + Q12)@;'(SB + Q12)7

The optimal control law is u = —Lx with L = Q5 1(SB + Q12)7 .
The minimal value is ngxo.

Remark: The feedback gain L does not depend on xg

Example: First order system

For x(¢) = u(¢), x(0) = xo,
Minimize /000 {x(t)2 + pu(t)z} dt
0=1-S%/p = S=p

Controller L=S/p=1/\/p = u=-x/\/p

Closed loop system & = —x/\/p = x=xpe VP

Riccati equation

o0
Optimal cost / {xz + puz} dt = xF Sxy = x2./p
0

What values of p give the fastest response? Why?
What values of p give smallest optimal cost? Why?
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Theorem: Stability of the closed-loop system

Assume that

_[@1 Qe
Q‘[Qﬂ Qz]

is positive definite and that there exists a positive-definite steady-state
solution S to the algebraic Riccati equation. Then the optimal
controller u(t) = —Lx(¢) gives an asymptotically stable closed-loop
system %(¢) = (A — BL)x(¢).

Proof:
%x(t)TSx(t) =2xTSx = 2xTS(Ax + Bu)
= —(xTle + 22T Qou + uTQzu) < Oforx(¢) #0

Hence x(t)T Sx(t) is decreasing and tends to zero as t — oo.

How to solve the LQ problem in Matlab

[L,S,E] = LQR(A,B,Q,R,N) calculates the optimal gain
matrix L such that the state-feedback law u = -Lx
minimizes the cost function

J = Integral x’Qx + u’Ru + 2xx’Nu dt

subject to the system dynamics dx/dt = Ax + Bu

E = EIG(A-B*L)

LQRD solves the corresponding discrete time problem

Example — Double integrator

a=[03) =) @n [ 8) e w0 (1)

States and inputs (dotted) for p = 0.01, p=0.1, p=1, p =10

== P e

Closed loop poles:
s=2"12p"1/4(—1+i)

Stability robustness of optimal state feedback

Nyquist Diagram

Imaginary Axis

o e B

Real s

Notice that the distance from L(iwI — A)™!B to —1 is never smaller
than 1. This is always true(!) for linear quadratic optimal state
feedback when @1 > 0, @12 = 0 and @2 = p > 0 is scalar. Hence
the phase margin is at least 60°.




Proof of stability robustness

Using the Riccati equation
0=Q+ATS +SA—LTQL L =@Q; (SB+ Q)"
it is straightforward to verify that

[I+L(io—A)"B]" @ [I+L(iw—A)'B] = [(iw *}4)713] : [3;12 %122} [(iw *;\)’13]

In particular, with @ > 0,Q12 =0,Q2s = p >0

[1+L(io — A)™'B]" p [1+ L(io — A)'B] = B [(io — A)']'Qi(iw —A)'B + p
2p

Dividing by p gives

1+ Liio—A)"'B|>1
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Next Lecture: Linear Quadratic Gaussian Control

controlled variables z distubances w
] fe———
Plant
measurements y control inputs ©
Controller

For a linear plant, minimize a quadratic function of the map from
disturbance w to controlled variable z




