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Lecture 6

Example: Ball in the Hoop

» Controllability and observability
> Multivariable zeros
> Realizations on diagonal form

Examples: Ballin a hoop
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[Glad & Ljung] Ch. 3.2-3.3, notes on course web page .
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#(t) = Az(t) + Bu(t)
is controllable , if for every 21 € R" there exists u(t),t € [0, ¢1], such
that z:(t1) = 21 is reached from x(0) = 0.

The collection of vectors x; that can be reached in this way is called
the controllable subspace.

Controllability criteria

The following statements regarding a system &(t) = Ax(t) + Bu(t)
of order n are equivalent:

(i) The system is controllable
(ii) rank [A— X B]=nforall A€ C
(iii) rank [B AB... A" 'B] =n

If A is exponentially stable, define the controllability Gramian
4 AT
S = / eMBBT A tat
0
For such systems there is a fourth equivalent statement:

(iv) The controllability Gramian is non-singular

Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is in a stable
system to reach a certain state.

In fact, let S = fotl At BBTeATtdt. Then, for the system
#(t) = Az(t) + Bu(t) to reach z(t1) = 1 from 2(0) = O itis
necessary that

t1
/0 u(t)2dt > 2T Sy

Equality is attained with

u(t) = BTeAT(“_t)Sflxl




Proof
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s0 Jit [u(t)Pdt > 2T S ey with equality attained for
u(t) = BTeA" (=082, This completes the proof.

Computing the controllability Gramian

The controllability Gramian S = [ e4*BBTeA"dt can be computed
by solving the linear system of equations

AS+ SAT + BBT =0

Proof. A change of variables gives
At ppT ATt  A(t—h) p pT AT (t—h)
/eBBe 'dt:/e’ BB'e dt
h 0

Differentiating both sides with respect to 4 and inserting i = 0 gives

—BBT = A4S + SAT

Example: Two water tanks
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The controllability Gramian S = _at Lt dt=
0 €

is close to singular when a ~ 1. Interpretation?

Example cont’d

In matlab you can solve the Lyapunov equation AS + SAT + BBT = 0by 1lyap

>> a=1.25 ; A=[-1 0 ; 0 -1xa ]; B=[1 ; 1] ;

>> Cs= [B A*B] , rank(Cs)
Cs =
1.0000 -1.0000
1.0000 -1.2500
ans =
2
>> S=1yap(A,B*B’)
S =
0.5000 0.4444
0.4444 0.4000
>> invS=inv(8)

invs = -1 (T _
162.0 ~180.0 Plotof [z1 2] S ol =1
-180.0 202.5 corresponds to the states we can reach by

J57 lu(®)[*dt = 1.

Observability

The system
i(t) = Ax(t)
y(t) = Ca(t)

is observable , if the initial state 2(0) = 29 € R" is uniquely
determined by the output y(t),t € [0, t1].

The collection of vectors x that cannot be distinguished from x = 0 is
called the unobservable subspace.

Observability criteria

The following statements regarding a system & (t) = Ax(t),
y(t) = Cx(t) of order n are equivalent:
() The system is observable
(ii) rank [A - ’\I} =nforaleC
C
C
CA
(iii) rank . =n
can

If A is exponentially stable, define the observability Gramian
O ATt AT v At
0= / AT CeM
0
For such systems there is a fourth equivalent statement:

(iv) The observability Gramian is non-singular

Interpretation of the observability Gramian

The observability Gramian measures how difficult it is in a stable
system to distinguish two initial states from each other by observing
the output.

In fact, let O; = fot‘ ATt OT Cetdt. Then, for #(t) = Az(t), the
influence from the initial state 2:(0) = o on the output y(t) = Cx(t)
satisfies

t1
/0 ly(t)dt = &7 0o

Computing the observability Gramian

The observability Gramian O = [ ¢A"*CT CeAtdt can be computed
by solving the linear system of equations

ATo+0A+CTC =0

Proof. The result follows directly from the corresponding formula for
the controllability Gramian.




Poles and zeros

Y (s) = [C(sI — A)7'B + D|U(s)
G(s)

For scalar systems, the points p € C where G(s) = oo are called
poles of G. They are eigenvalues of A and determine stability. The
poles of G(s)~! are called zeros of G.

This definition can be used also for square systems, but we will next
give a more general definition, involving also multiplicity.

Pole polynomial and Zero polynomial

» The pole polynomial is the least common denominator of all
minors (sub-determinants) to G(s).

» The zero polynomial is the greatest common divisor of the
maximal minors of G(s).

The poles of G are the roots of the pole polynomial.
The zeros of G are the roots of the zero polynomial.

When G(s) is square, the only maximal minor is det G(s), so the
zeros are determined from the equation

det G(s) =0

For a minimal and square realization, zeros are the solutions to

det {S]_A B} =0

Interpretation of poles and zeros

Poles:

» Apole s = a is associated with a time function z(t) = zge®
» Apole s = ais an eigenvalue of A

Zeros:

» A zero s = a means that an input u(t) = uge® is blocked
» A zero describes how inputs and outputs couple to states

uDy

Example: Ball in the Hoop

input w (

output 6
G+ch+kh=w

The transfer function from w to 6 is ?Zﬁ The zero in s = 0 makes
it impossible to control the stationary position of the ball.

Example: Two water tanks
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1= —x1 + Uy Y1 = x1 +u2
Ty = —2w2 + Uy Y2 = 2x2 + Uy
Gls) = |71 1 det Gs) = — 5
2 L (s+1)(s+2)

The system has a zero in the origin! At stationarity y; = ¥».

Plot Singular Values of G(s) Versus Frequency

» s=tf(’s’) —
» G=[1/(s+1) 1 ;2/(s+2) 1]
» sigma(G) ; plot singular values

% ALT. for a certain frequency:

» i=sqrt(-1)

» w=1;

» A=[1/(i*w+1) 1 ; 2/(i*w+2) 1]
» [U,S,V] = svd(A) 2 e e

1
The largest singular value of G(iw) = | 5! 1

w+2
This is due to the second input. The first input makes it possible to
control the difference between the two tanks, but mainly near w = 1
where the dynamics make a difference.

is fairly constant.

Singular values - continued

Revisit example from lecture notes 2:

The largest singular value of a matrix A, 7(A) = omaz(A) is the
square root of the largest eigenvalue of the matrix A* A,
E(A) = )\mux(A*A)

Q: For frequency specifications (see prev lectures); When are we
interested in the largest amplification and when are we interested in
the smallest amplification?

Realization on diagonal form

Consider a transfer matrix with partial fraction expansion

" C;B;
G(s) = Y. —/——+D
i1 5T Pi
This has the realization
plf 0 Bl
i(t) = z(t)+ | ¢ | u(t)
0 pnI Bn
y(t) = [01 c} 2(t) + Duf(t)

The rank of the matrix C; B; determines the necessary number of
columns in B; and the multiplicity of the pole p;.




Example: Realization of Multi-variable system Summary

To find state space realization for the system

o

» Controllability and observability

1 2
Gls)=| GG
(5+2)(5+4) 5+2

. ’ > Multivariable zeros
write the transfer matrix as

ok ;1;;3]_[5] 0 [l o oo e

» Realizations on diagonal form

+ — —
m—ﬁ% e s+1 s+2 s+ 3 s+4
This gives the realization Examples:  Ball in a hoop
Multiple tanks
i1 (1) 1 0 0 0] [=n® 11
ir()| |0 =2 0 0 fmt)| |3 1| [w()
#3(t)| [0 0 =3 0| |z3(¢) 0 =1 |uz2(t)
Z4(t) 0 0 0 -4 [z4(t) -3 0 [Glad & Ljung] Ch. 3.2-3.3, notes on course web page
n®] 1 o 1 0]
[yz(t) =l 10 1|°®
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