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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

Q@ Controllability, observability, multivariable zeros
@ Fundamental limitations
@ Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
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@ Controllability and observability
@ Multivariable zeros
@ Realizations on diagonal form

Examples: Ball in a hoop
Multiple tanks

[Glad & Ljung] Ch. 3.2-3.3, notes on course web page
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Example: Ball in the Hoop
input w (

\
|

}K/,\ output 0
0+ ch+ ko=
Can you reach § = /4, 0 =0? Can you stay there?
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Example: Two water tanks

-

Ui \L (5] \L

€2
1
— 1|1
[ ‘i
U T U2 azrs a>1
T1 = —1 + U Y1 = T1 + ug

To = —axg + Uy Y2 = ar2 + U2
Canyoureachy; =1,y = 27 Can you stay there?
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Controllability

The system

x(t) = Az(t) + Bu(t)
is controllable , if for every x; € R" there exists u(t), ¢ € [0, t1], such
that x(¢1) = 1 is reached from z(0) = 0.

The collection of vectors x; that can be reached in this way is called
the controllable subspace.
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Controllability criteria

The following statements regarding a system & (t) = Axz(t) + Bu(t)
of order n are equivalent:

(i) The system is controllable
(i) rank [A— X B]=mnforall A € C
(iii) rank [B AB... A" 'B] =n

If A is exponentially stable, define the controllability Gramian

At T AT
S:/ etBBTeA Ut
0
For such systems there is a fourth equivalent statement:

(iv) The controllability Gramian is non-singular
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Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is in a stable
system to reach a certain state.

In fact, let S = ;! eAtBBTeA tdt. Then, for the system
#(t) = Az(t) + Bu(t) to reach z(t1) = z1 from z(0) = O itis
necessary that

t1
/0 lu(t)[2dt > 2T S 2

Equality is attained with

ult) = BTeAT(tl—t)Sl—lxl
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t
0< [T SieA 0B — u(t) )BT 5 ey — u(t)]at

ty
=zl Sy / e BB A dt Stz
0

2478 / A<t1fBu dt—l—/ £)[2dt

= —zTs +/ |u(t);2dt
0

SO fotl lu(t)|>dt > :vlTSflzL‘l with equality attained for
u(t) = BTeA" (=0 514 This completes the proof.
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Computing the controllability Gramian

The controllability Gramian S = [ e* BBTeA"dt can be computed
by solving the linear system of equations

AS +SAT + BBT =0

Proof. A change of variables gives

/ T ABBT A = / A1) p BT AT (1) gy
h 0

Differentiating both sides with respect to h and inserting h = 0 gives

—BBT = AS + SAT
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Example: Two water tanks

Z2
z1

i 1
U i X1 u2 \L arz

1 = —x1 + U1 To = —axo + Uy

o —t] [e-t]T 1 1
The controllability Gramian S = “at| | el dt=] % i
0 € € a+1 a

a+1 2

is close to singular when a =~ 1. Interpretation?
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Example cont’d

In matlab you can solve the Lyapunov equation AS + SAT + BBT = 0by 1lyap

>> a=1.25 ; A=[-1 0 ; 0 -1%a ]; B=[1 ; 1] ;

1) b 21

>> Cs= [B Ax*B] , rank(Cs)

Cs =
1.0000 -1.0000
1.0000 -1.2500

ans =

2

>> S=lyap(A,B*B’)

S =
0.5000 0.4444
0.4444 0.4000

>> invS=inv(S)

invS = -1 |%1
, =1
162.0 -180.0 Plotof [z1 2] -8 .
-180.0 202.5 corresponds to the states we can reach by

I3 lu(®)?dt = 1.
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Observability

The system

is observable , if the initial state z(0) = 2o € R™ is uniquely
determined by the output y(t),t € [0, ¢1].

The collection of vectors x( that cannot be distinguished from x = 0 is
called the unobservable subspace.
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Observability criteria

The following statements regarding a system @(t) = Ax(t),
y(t) = Cxz(t) of order n are equivalent:

(i) The system is observable

(i) rank . )\I] =nforall A e C
C
C
CA
(iii) rank ) =n
_CA.nfl

If Ais exponentially stable, define the observability Gramian

0= / ATHOT Ot gy
0

For such systems there is a fourth equivalent statement:

(iv) The observability Gramian is non-singular
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Interpretation of the observability Gramian

The observability Gramian measures how difficult it is in a stable
system to distinguish two initial states from each other by observing
the output.

In fact, let O; = [I* eA"tCT CeAtdt. Then, for &:(t) = Ax(t), the
influence from the initial state 2(0) = x¢ on the output y(t) = Cz(t)
satisfies

t1
/0 \y(t)]Zdt = nglxo
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Computing the observability Gramian

The observability Gramian O = [ eA"*CT CeAldt can be computed
by solving the linear system of equations

ATo+0A+CTC =0

Proof. The result follows directly from the corresponding formula for
the controllability Gramian.
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Poles and zeros

Y(s) =[C(sI — A)"'B + D] U(s)
G(s)

For scalar systems, the points p € C where G(s) = oo are called
poles of G. They are eigenvalues of A and determine stability. The
poles of G/(s)~! are called zeros of G.

This definition can be used also for square systems, but we will next
give a more general definition, involving also multiplicity.
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Pole polynomial and Zero polynomial

@ The pole polynomial is the least common denominator of all
minors (sub-determinants) to G(s).

@ The zero polynomial is the greatest common divisor of the
maximal minors of G(s).

The poles of G are the roots of the pole polynomial.
The zeros of G are the roots of the zero polynomial.

When G(s) is square, the only maximal minor is det G(s), so the
zeros are determined from the equation

det G(s) =0

For a minimal and square realization, zeros are the solutions to

sI—A B
det[_c D]_O
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Interpretation of poles and zeros

Poles:

@ Apole s = a is associated with a time function z(t) = zpe®

@ Apole s = a is an eigenvalue of A
Zeros:

@ A zero s = a means that an input u(t) = uge® is blocked

@ A zero describes how inputs and outputs couple to states

uEy
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Example: Ball in the Hoop

input w (

output 8
04 ch+kb=u

The transfer function from w to 6 is m The zero in s = 0 makes
it impossible to control the stationary position of the ball.
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Example: Two water tanks

- =

ull uljx
)
1
| |
u2 T U9 229
T1 = —T1 +u; Y1 =21+ us
Ty = —2T9 + Uy Yo = 2x9 + Us
Go= | Y = ——t
S pry e —
T (s+1)(s+2)

The system has a zero in the origin! At stationarity y; = 2.
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Plot Singular Values of G(s) Versus Frequency

» s=tf(’s’) |
» G=[1/(s+1) 1; 2/(s+2) 1]
» sigma(G) ; plot singular values N

(abs)

% ALT. for a certain frequency:

Singular Values

» i=sqri(-1)
» w=1;
o A=[1/(i*w+1) 1 ; 2/(*w+2) 1]
» [U,S,V] = svd(A) T ey
i
The largest singular value of G (iw) = | 4! is fairly constant.

- 1

w2
This is due to the second input. The first input makes it possible to
control the difference between the two tanks, but mainly near w =1

where the dynamics make a difference.
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Singular values - continued

Revisit example from lecture notes 2:

The largest singular value of a matrix A, 7(A) = 0y (A) is the
square root of the largest eigenvalue of the matrix A* A,
T(A) = V/Amaz(A*A)

Q: For frequency specifications (see prev lectures); When are we
interested in the largest amplification and when are we interested in
the smallest amplification?
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Realization on diagonal form

Consider a transfer matrix with partial fraction expansion

G(s) = Z V2 +D

=15 D

This has the realization

p1l 0 By
(t) = z(t)+ | | u(t)

0 pnI Bn
y(t) = [C1 ... Cu]a(t)+ Du(t)

The rank of the matrix C; B; determines the necessary number of
columns in B; and the multiplicity of the pole p;.
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Example: Realization of Multi-variable system

To find state space realization for the system

1 2
G(s) = [f= (++1)(+3)
(s4+2)(s+4) s+2

write the transfer matrix as

1 1_T:Hpu+mbu_mmu_mpm

3 sil 2 s+1 1 s+3
s+2 s+4 s+2

This gives the realization

jil(t) -1 0 0 0 l‘l(t) 1 1

0| =10 0o =3 o |m®|T]o -1 [UQ(t)]
da(t) 0 0 0 —4| |zt 3 0

@] 1o 10

Bg(t)} _[0 10 1} z(t)

Automatic Control LTH, 2015 FRTN10 Multivariable Control, Lecture 6



@ Controllability and observability
@ Multivariable zeros
@ Realizations on diagonal form

Examples: Ball in a hoop
Multiple tanks

[Glad & Ljung] Ch. 3.2-3.3, notes on course web page
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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

Q@ Controllability, observability, multivariable zeros
@ Fundamental limitations
@ Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
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