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Lecture 2: Stability and Robustness

◮ Stability

◮ Robustness and sensitivity

◮ Small gain theorem



Stability is crucial

◮ bicycle

◮ JAS 39 Gripen

◮ Mercedes A-class

◮ ABS brakes



Input–output stability

u y
S

A system is called input–output stable (or “L2-stable” or just “stable”)
if its L2-gain is finite:

‖S‖ = sup
u

‖S(u)‖2

‖u‖2
< ∞



Input–output stability of LTI systems

For an LTI system S with impulse response g(t) and transfer function
G(s), the following stability conditions are equivalent:

◮ ‖S‖ is bounded

◮ g(t) decays exponentially

◮

∫
∞

0 |g(t)|dt is bounded

◮ All poles of G(s) have negative real part (G(s) is Hurwitz stable)



Internal stability

The autonomous LTI system

dx

dt
= Ax

is called exponentially stable if the following equivalent conditions
hold:

◮ There exist constants α, β > 0 such that

|x(t)| ≤ αe−βt|x(0)| for t ≥ 0

◮ All eigenvalues of A have negative real part

(Exponential stability is a stronger form of asymptotic stability. For LTI systems, they

are equivalent.)



Internal vs input–output stability

If ẋ = Ax is exponentially stable, then G(s) = C(sI − A)−1B + D
is input–output stable.

Warning: The opposite is not always true! There may be unstable
pole-zero cancellations (that also render the system uncontrollable
and/or unobservable), and these may not be seen in the transfer
function!



Stability of feedback loops

Assume scalar open-loop system G0(s)

♥ G0(s)✲✲

−1

✲

✛

✻
Σ

The closed-loop system is input–output stable if and only if all
solutions to the equation

1 + G0(s) = 0

are in the left half plane (i.e., have negative real part).



The Nyquist criterion

If G0(s) is stable, then the closed-loop system [1 + G0(s)]−1 is stable
if and only if the Nyquist curve does not encircle −1.

More generally, the difference between the number of unstable poles
in [1 + G0(s)]−1 and the number of unstable poles in G0(s) is equal
to the number of times the point −1 is encircled by the Nyquist plot in
the clockwise direction.
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(Note: Matlab gives a Nyquist plot for both positive and negative frequencies!)



Sensitivity and robustness

◮ How sensitive is the closed-loop system to model errors?

◮ How do we measure the “distance to instability”?

◮ Is it possible to guarantee stability for all systems within some
distance from the ideal model?



Amplitude and phase margin

Amplitude margin Am:

arg G(iω0) = −180◦, |G(iω0)| =
1

Am

Phase margin φm:

|G(iωc)| = 1, arg G(iωc) = φm − 180◦
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Mini-problem

❢ k(s+1)
s2+cs+1 e−sT

−1

✲ ✲ ✲ ✲

✛

✻

Nominally k = 1, c = 1 and T = 0. How much margin is there in each
of the parameters before the system becomes unstable?
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How sensitive is T to changes in P ?

❤ C(s) P (s)

−1

✲ ✲ ✲ ✲

✛

✻

r y

Y (s) =
P (s)C(s)

1 + P (s)C(s)
︸ ︷︷ ︸

T (s)

R(s)



dT

dP
=

d

dP

(

1 − 1

1 + PC

)

=
C

(1 + PC)2
=

T

P (1 + PC)

Define the sensitivity function , S:

S :=
d(log T )

d(log P )
=

dT/T

dP/P
=

1

1 + PC

and the complementary sensitivity function T :

T := 1 − S =
PC

1 + PC
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Note that the

◮ complementary sensitivity function T is the transfer function
Gr→y

◮ sensitivity function S is the transfer function Gm→y

S + T = 1



r

+

+++
e

C P

−1

u
l

y

n

m

Note that the

◮ complementary sensitivity function T is the transfer function
Gr→y

◮ sensitivity function S is the transfer function Gm→y

S + T = 1

Note: there are four different transfer functions for this closed-loop system and all have to be
stable for the system to be stable!

It may be OK to use an unstable controller C



Nyquist plot illustration

The sensitivity function measures the distance between the Nyquist
plot and the point −1:

R−1 = sup
ω
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1 + P (iω)C(iω)
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Lecture 2

◮ Stability

◮ Robustness and sensitivity

◮ Small gain theorem



Robustness analysis

Example: How large perturbations ∆(iω) can be tolerated
without risking instability?

❢ ❢P (iω)

−C(iω)

∆(iω)

✻
✲ ❄

✛

✲

✲

✲

v w



The Small Gain Theorem

r1

r2

e1

e2

S1

S2

Assume that S1 and S2 are input-output stable. If ‖S1‖ · ‖S2‖ < 1,
then the gain from (r1, r2) to (e1, e2) in the closed loop system is
finite.



The Small Gain Theorem

r1

r2

e1

e2

S1

S2

Assume that S1 and S2 are input-output stable. If ‖S1‖ · ‖S2‖ < 1,
then the gain from (r1, r2) to (e1, e2) in the closed loop system is
finite.

◮ Note 1: The theorem applies also to nonlinear, time-varying, and
multivariable systems

◮ Note 2: The stability condition is sufficient but not necessary, so
the results may be conservative



Proof

Define ‖y‖T =
√

∫ T
0 |y(t)|2dt. Then ‖S(y)‖T ≤ ‖S‖ · ‖y‖T .

e1 = r1 + S2(r2 + S1(e1))

‖e1‖T ≤ ‖r1‖T + ‖S2‖
(

‖r2‖T + ‖S1‖ · ‖e1‖T

)

‖e1‖T ≤ ‖r1‖T + ‖S2‖ · ‖r2‖T

1 − ‖S1‖ · ‖S2‖

This shows bounded gain from (r1, r2) to e1.

The gain to e2 is bounded in the same way.



Application to robustness analysis

❢ ❢G(iω)

−C(iω)

∆(iω)

✻
✲ ❄

✛

✲

✲

✲

v w

The diagram can be redrawn as

✛

v w
✲ ∆ ✲

GC
1+GC

✲
✻
❡



Application to robustness analysis

✛

v w
✲ ∆ ✲

GC
1+GC

✲
✻
❡

The small gain theorem guarantees stability if

‖∆‖∞ ·
∥
∥
∥
∥

GC

1 + GC

∥
∥
∥
∥

∞

< 1



Gain of multivariable LTI systems

Recall from Lecture 1 that

||S|| = sup
ω

|G(iω)| = ||G||∞

for a stable LTI system S.

How to calculate |G(iω)| for a multivariable system?



Vector norm and matrix gain

For a vector x ∈ C
n, we use the 2-norm

|x| =
√

x∗x =
√

|x1|2 + · · · + |xn|2

For a matrix M ∈ C
n×n, we use the L2-induced norm

‖M‖ := sup
x

|Mx|
|x| = sup

x

√

x∗M∗Mx

x∗x
=

√

λ̄(M∗M)

Here λ̄(M∗M) denotes the largest eigenvalue of M∗M . The ratio
|Mx|/|x| is maximized when x is a corresponding eigenvector.



Example: Different gains in different directions:
[
y1

y2

]

=

[
2 4
0 3

] [
u1

u2

]
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Example: matlab-demo



Singular Values

For a matrix M , its singular values σi are defined as

σi =
√

λi

where λi are the eigenvalues of M∗M .

Let σ̄(M) denote the largest singular value and σ
¯
(M) the smallest

singular value.

For a linear map y = Mu, it holds that

σ
¯
(M) ≤ |y]

|u| ≤ σ̄(M)



Singular Values

For a matrix M , its singular values σi are defined as

σi =
√

λi

where λi are the eigenvalues of M∗M .

Let σ̄(M) denote the largest singular value and σ
¯
(M) the smallest

singular value.

For a linear map y = Mu, it holds that

σ
¯
(M) ≤ |y]

|u| ≤ σ̄(M)

The singular values are typically computed using singular value decomposition (SVD):

M = UΣV ∗



SVD example

Matlab code for singular value decomposition of the matrix

A =

[
2 4
0 3

]

SVD:
A = U · S · V ∗

where both the matrices U and V are unitary (i.e. have or-
thonormal columns s.t. V ∗

· V = I) and S is the diagonal
matrix with (sorted decreasing) singular values σi.
Multiplying A with a input vector along the first column in
V gives

A · V(:,1) = USV ∗
· V(:,1) =

= US

[
1
0

]

= U(:,1) · σ1

That is, we get maximal gain σ1 in the output direction

U(:,1) if we use an input in direction V(:,1) (and minimal

gain σn = σ2 if we use the last column V(:,n) = V(:,2)).

>> A=[2 4 ; 0 3]

A =

2 4

0 3

>> [U,S,V]=svd(A)

U =

0.8416 -0.5401

0.5401 0.8416

S =

5.2631 0

0 1.1400

V =

0.3198 -0.9475

0.9475 0.3198

>> A*V(:,1)

ans =

4.4296

2.8424

>> U(:,1)*S(1,1)

ans =

4.4296

2.8424



Example: Gain of multivariable system

Consider the transfer function matrix

G(s) =






2

s + 1

4

2s + 1
s

s2 + 0.1s + 1

3

s + 1






>> s=tf(’s’)

>> G=[ 2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];

>> sigma(G) % plot sigma values of G wrt fq

>> grid on

>> norm(G,inf) % infinity norm = system gain

ans =

10.3577



Singular Values
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Singular Value (abs): 5.26
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Figure: The singular values of the tranfer function matrix (prev slide). Note
that G(0)=[2,4 ; 0 3] which corresponds to M in the SVD-example above.
‖G‖∞ = 10.3577.



Summary of today’s most important concepts

◮ Input–output stability: ‖S‖ < ∞
◮ Sensitivity function: S := dT/T

dP/P = 1
1+P C

◮ Complementary sensitivity function: T = 1 − S

◮ Small Gain Theorem: The feedback interconnection of S1 and S2

is stable if ‖S1‖ · ‖S2‖ < 1

◮ The gain of a multivariable system G(s) is given by
supω σ̄(G(iω)), where σ̄ is the largest singular value
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