Lecture 14: Controller simplification

¢ Model reduction by balanced truncation
o Application to controller simplification

o Frequency weighted balanced truncation

Model reduction by balanced truncation is described in
Glad/Ljung, section 3.6.

Example — DC-motor
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We previously minimized ff‘;o G (i0) G (io)*dw subject to
step response bounds on the transfer functions from w; and wy
1o z1:

The optimized controller has high order

Recall that C(s) = [I — Q(s)Py(s)] " Q(s) with @(s) = X2 Qi (s).

Hence the controller order will grow with the number of basis
functions ¢; and their complexity.

However, in the DC-servo example, both the Bode diagram and
pole-zero diagram of the controller indicate that cancellations can be
done to simplify the controller.
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Controllability and Observability

The controllability Gramian S = [;° eA’BBTeA"dt can be
computed by solving the linear system of equations

AS +SAT + BBT =0
The observability Gramian O = [;° eA"*CT CeA?dt can be
computed by solving the linear system of equations

ATo+0A+CTC=0

We want to remove states that are either poorly controllable or
poorly observable.

Gramians, looking back

% =Ax+ Bu

t
y=Cx+ Du x(t) = eAtx(0)+/ A=) Bu(r)dr

Jo

Impulse response from zero intial condition: u;(¢) = d(¢), x(0) =0
xi(t) = eAtBi
X(@t)=[vx1 2 - 2x)= eA'B
sxa/ X(OXT(t)dt = / eA"BBTeA  dt
0 0

Output from u = 0 (only initial state x(0) = xo)
y(t) = Cx(t) = Cerlxg

/ y(@#)Ty(t)dt = / xL A" CT CAtxgdt = xTO.xo
Jo Jo

Balanced Realizations

l-zor a stable system (A, B, C) with gramians S, and O,, the variable
transformation & = Tx gives the new state matrices A = TAT !,
B =TB, C = CT~! and the new gramians

00 —, 00 .
S; = / AMBBTA dt = / Te*BBT A" T dt = TS, TT
0 0

0: = / AT CT Celtdt = / T-TeM 0T CeA T 1dt = T~ 0, T
0 0

o1 0
A particular choice of T' gives S¢ = O¢ =
0 Oy
X
The corresponding realization
é= 55 +Bu
y=Cx

is called a balanced realization.

Hankel singular values

Notice that
o? 0
= (18, T") (770, T7') = TS0, T™*
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so the diagonal elements are the eigenvalues of S, O,,
independently of coordinate system. The numbers o4,...,0,
are called the Hankel singular values of the system.

A small Hankel singular value corresponds to a state that is
both weakly controllable and weakly observable. Hence, it can
be truncated without much effect on the input-output behavior.

Model reduction by balanced truncation

Consider a balanced realization
51} [An A12] |:§1:| [31} [21 0}
L = Y =
{52 Ag1 Aga| &2 + By Y 0 X,

y=[C1 C] Fl} +Du
Cril 0
.
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with the lower part of the gramian being g =

Replacing the second state equation by &, = 0 gives the

relation 0 = Ag1&1 + Age&s + Bou. The reduced system
&1 = (A1 — A19Ag) Agy)Er + (Br — A1p Ay Bo)u
Y= (Cl — CQA521A21)§1 + (D - CzAElez)u

satisfies the error bound

lly = ll2
llellz

<2041+ +20,




Example 1 Example 2 — Heat Exchanger

1-s
56 4 355 + 55t + 7s3 + 552 +3s+ 1

Original system:

. T .
Hankel singular values: Vcdd—tc = fe(Tg, = Te) + B(Tw — Tc) (cold side)
Sigma = [1.9837 1.9184 0.7512 0.3292 0.1478 0.0045] dTy .
VHidt = fu(Ty, — Tu) — B(Tg — Tc)  (hot side)
Reduced system:
0.3717 53 - 0.9682 59 + 1.14 5 - 0.5185 uy = T, is the in-flow temperature on the cold side
x1 = T¢ is the out-flow temperature on the cold side
$°3 + 1.136 s72 + 0.825 s + 0.5185 ug = Ty, is the in-flow temperature on the hot side

x9 = Ty is the out-flow temperature on the hot side

_ ] Numerical values:
- N . _[-021 02 . 001 o
i |\ *Zlo2 —o021|*"|[ 0 o001]"
y=x
Example 2 — Heat Exchanger DC-servo again
A state transformation & = —7.07(x1 + x2), 2 = 7.07(x1 — x2)
gives the balanced realization To simplify the controller, we would like to remove states that
have little influence on the input-output relationship, i.e. states
g {—0601 _0041} £ +0.0707 {—11 :ﬂ " that are poorly controllable or poorly observable.
’ For this, we will compute the controllability gramian and the
y = 0.0707 {—1 1 } £ observability gramian. Howgver, these are defined only for
-1 -1 stable systems. Hence the integrator needs to be treated
the common controllability/observability matrix separately:
6.17
S.—0.—[08 0 Copt(s) = Cstab(s) = ——
€T7¢7 o 00122

For Csian(s) the gramians have eigenvalues
and the reduced model
[0.0933 0.2972 0.9417 5.9373 50.0472]
[0.0291 0.0913 0.2964 1.8811 17.6379]

eig(ConGram)
eig(ObsGram)

& =-001& —0.0707[1 1]u

y=—0.0707 H E1+0.0122 [ ! _11} u

-1 Three out of five states are poorly controllable and three are

weakly observable. This can be used for reduction!

Reducing the DC-servo Controller Are all frequencies equally important?

Recall the Bode plot of the optimized controller Copt(s):

. - lly = 2
max |G(iw) — G-(iw)| = sup ———=

The error bound

<20,41+-+20,

emphasizes all frequencies equally, but comparing a controller
C(s) with a reduced controller C,(s) in closed loop operation
gives

Magnitude (abs)
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|P(I+ CP)™'C — P(I+ C.P)~'C/| ~ |P(I + CP)"}(C —C)|

Frequency (radiseq)

: _ 6.17
The Hankel singular values of Ctan(s) = Copt(s) + >3+ are Hence it is interesting to minimize the frequency weighted error

Sigma = [16.0768 2.2306 0.7023 0.1994 0.0896] ax |W(io)[C(io) — C.(in)]
m '
®

How many states need to be kept in Cgtap(s)?

What kind of controller remains? where W(io) = P(i)(I + C(io)P(i)) ™.

Frequency weighted balanced truncation Summary

For model reduction with the aim to minimize
max HWo(iw)[G(iw) - G,(iw)]Wi(iw)H

where » Low order controllers could be desirable to meet

constraints on speed and memory.

Balanced realizations can reveal less important states

Good theoretical error bounds

[A BC] [ s Su] [ s S12} [A BC]T [BD] [BD}T o » Frequency weighting essential for closed loop performance

i + i ;i i _

Wi(s) = Ci(sI —A)) 'Bi+D; G(s)=C(sI—A)'B+D Wy(s)=Cy(sI —A,) 'B, + D,

\{

find extended gramians by solving

v

0 A |[ST, S ST, S| |0 A B; B; » Reduction of unstable controllers not treated here
T

A 0 O Oy O Oy A 0 CTDoT —

5o a) lon o2+ |on o) [me 4]+ [ pI=0

then change coordinates to make S and O equal and diagonal
before truncating the realization of G(s) to get G, (s) as before.




