The @-parametrization (Youla)

controlled variables z distubances w
- [———

Plant

measurements y control inputs u

Controller

Idea for lecture 12-14:
The choice of controller generally corresponds to finding Q(s),
to get desirable properties of the map from w to z:

z w

%Pzw(s) - qu(s)Q(s)wa(s)

Once Q(s) is determined, a corresponding controller is derived.

Lecture 13: Synthesis by Convex Optimization

o Example: Spring-mass system
o Introduction to convex optimization
o Controller optimization using Youla parametrization

o Examples revisited

Most of this lecture is based on source material from Boyd,
Vandenberghe and coauthors. See
http://www.control.lth.se/Education/EngineeringProgram/FRTN10.html

Example: Spring-mass System

’—> dl d2
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Position of the first mass, d,

The step response is not within its upper and lower bounds.
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Control Signal, u(t)

The step input stays within its amplitude bound |u(¢)| < 6.
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Sensitivity Function S

Magnitude (abs)

10
Frequency (radis)

The sensitivity does not satisfy the magnitude bound |S| < 1.3
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Least-squares

minimize || Az — b]|3
solving least-squares problems
e analytical solution: z* = (ATA)~1ATb
o reliable and efficient algorithms and software

e computation time proportional to n2k (A € R¥*™); less if structured

e a mature technology

using least-squares
o least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear program (LP)

minimize ¢’z +d
subject to Gz < h
Az =b
e convex problem with affine objective and constraint functions

o feasible set is a polyhedron

Convex optimization problems 417

Linear programming

minimize ¢’z
subject to alz <b;, i=1,...,m
solving linear programs
e no analytical formula for solution
e reliable and efficient algorithms and software
e computation time proportional to n?m if m > n; less with structure

e a mature technology
using linear programming

e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving ¢3- or {.-norms, piecewise-linear functions)
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Convex optimization problem

minimize  fo(x)
subject to  fi(z) <b;, i=1

e objective and constraint functions are convex:
filax + By) < afi(z) + Bfi(y)
ifa+pf=1,a>0,8>0

e includes least-squares problems and linear programs as special cases

Introduction 1-7

solving convex optimization problems

e no analytical solution
o reliable and efficient algorithms

e computation time (roughly) proportional to max{n?, n?m, F'}, where F
is cost of evaluating f;'s and their first and second derivatives

e almost a technology

using convex optimization

o often difficult to recognize
e many tricks for transforming problems into convex form

e surprisingly many problems can be solved via convex optimization
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Brief history of convex optimization

theory (convex analysis): cal900-1970

algorithms

e 1947: simplex algorithm for linear programming (Dantzig)

e 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )
e 1970s: ellipsoid method and other subgradient methods

e 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

e late 1980s—now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications
e before 1990: mostly in operations research; few in engineering

e since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . . . ); new problem classes
(semidefinite and second-order cone programming, robust optimization)
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Examples on R

convex:

e affine: ax +bon R, for any a,b € R

e exponential: ¢**, for any a € R

e powers: z*on Ry4, fora >1ora<0

e powers of absolute value: |z|? on R, for p > 1

o negative entropy: zlogx on Ry

concave:
e affine: az + b on R, for any a,b € R
e powers: z*on R4, for0 <a <1

e logarithm: logz on Ry

Convex functions 3-3

Examples on R" and R"*"

affine functions are convex and concave; all norms are convex

examples on R"

o affine function f(z) =a’z +b

o norms: [lall, = (I, [2:]7) /% for p > 1; ]l = max

examples on R™*™ (m x n matrices)

o affine function

F) =te(ATX) +0=3 "> AyXi; +b

i=1 j=1

e spectral (maximum singular value) norm

F(X) = [1X]|2 = omax(X) = </\maX(XTX>>]/2
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Convex optimization problem

standard form convex optimization problem

minimize  fo(x)
subject to  fi(z) <0, i=1,...,
afz=b;, i=

e fo, fi, ..., fm are convex; equality constraints are affine

e problem is quasiconvex if fy is quasiconvex (and f1, ..., fn convex)




Quadratic program (QP)

minimize  (1/2)zT Pz +qTx + 7
subject to Gz < h
Az =1b
e P €S, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

Convex optimization problems 2

Second-order cone programming

minimize  fTx
subject to  [|Ajx +billa < cfz+d;, i=1,....m
Fo=g

(A, cR" " F e Rpxn)

Semidefinite program (SDP)

minimize Tz
subject to  z1 Fy + xoFo + -+ x, F + G X0
Az =b

with F;, G € §*

e inequality constraint is called linear matrix inequality (LMI)

Newton’s method

given a starting point x € dom f, tolerance € > 0.
repeat
1. Compute the Newton step and decrement.

Azy = =V f(2) 'V (), A=V (@) Vf(2)' V().

2. Stopping criterion. quit if >\2/2 <e
3. Line search. Choose step size t by backtracking line search.
4, Update. x := © + tAxy.

Barrier method for constrained minimization

minimize  fo(x)
subjectto fi(x) <0 1=1,....m
Ax=0b

approximation via logarithmic barrier

minimize  fo(z) — (1/t) Y0, log(— fi(x))

subject to Az =10

e an equality constrained problem

Sl

o fort >0, —(1/t)log(—u) is a
smooth approximation of I_

e approximation improves as t — 0o

Interior-point methods

12+

Outline

o Example: Spring-mass system
o Introduction to convex optimization
e Controller optimization using Youla parametrization

o Examples revisited

Scheme for numerical optimization of @

Given some fixed set of basis function ¢o(s),...,on(s), we will
search numerically for matrices @y, ..., @ y such that the closed
loop transfer matrix G, (s) satisfies given specifications when

N
Gw(8) = Paw(s) — Pau(s)Q(s) Pyw(s) and Q(s) = Z Qror(s)
k=0

Once Q(s) has been determined, we will recover the desired
controller from the formula

C(s) = [I— Q(s)Pyu(s)] ' Q(s)

It is possible to choose the sequence ¢o(s), ¢1(s), Pa(s), ... such
that every stable @ can be approximated arbitrarily well. Hence,
in principle, every convex control design problem can be solved
this way.

But, what specifications give a convex design problem?

Pulse response parameterization

We will use an intuitively simple parametrization of Q(s) where
each parameter @, represents a point on the corresponding
impulse response in time domain.
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Mini-problem Lower bound on step response

2
Which specifications are convex constraints on @?
15

1. Stability of the closed loop system 0%

2. Lower bound on step response from w; to z; at time ¢; 1 o OO ©50990000000000

3. Upper bound on step response from w; to z; at time ¢;

(e}

4. Lower bound on Bode amplitude from w; to z; at frequency w; 05

5. Upper bound on Bode amplitude from w; to z; at frequency w; o

6. Interval bound on Bode phase from w; to z; at frequency o; B 5 0 15 20 25

The step response depends linearly on @, so every time ¢,
with a lower bound gives a linear constraint.

Upper bound on step response Upper bound on Bode amplitude
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An amplitude bound |G (iw;)| < c is a quadratic constraint.

Every time ¢, with an upper bound also gives a linear constraint.

Lower bound on Bode amplitude Synthesis by convex optimization

A general control synthesis problem can be stated as a convex

10! Ga(i0) optimization problem in the variables Qo, ..., @,. The problem
has a quadratic objective, with linear and quadratic constraints:
1 Gy (i) Q(io)
% D e ———
H Minimize [0 |Pay (i) + Py (i) Z Q191 (i®) Py, (io) |?do } quadratc objective
g ®
10
. step response w; — z; is smaller than f;;;, at time ¢;, . .
) subject to step response w; — z; is bigger than g, at time ¢, linear constraints
o 10" Bode magnitude w; — z; is smaller than h;;; at w;, } quadratic constraints

Frequency (adisec)

Once the variables Q, ..., @, have been optimized, the
An lower bound |G (iw;)| is a non-convex quadratic constraint. controller is obtained as C(s) = [I — Q(s)Pyu(s)]_lQ(s)
This should be avoided in optimization.

Outline Example — DC-motor

o Example: Spring-mass system

w1 i T22
r . m i 21

-1
o Introduction to convex optimization ==

o Controller optimization using Youla parametrization The transfer matrix from (w1, ws) 10 (21, 2e) is

o Examples revisited

1

P —PC

1+PC 1+PC
sz(s) = |: _c :|
1+PC 1+PC

with P(s) = %. We will choose C(s) to minimize

trace / Go(io)G o (io)*dw

subject time-domain bounds.




DC-servo with time domain bounds

Input step disturbance Reference step

Step Response

What if we remove the upper bound on the response to input
disturbances ?

DC-servo with time domain bounds

Input step disturbance Reference step

ssssssssssssssssss

The integral action in the controller is lost, just as in lecture 11!

Summary

» There are efficient algorithms for convex optimization, e.g.
» Linear programming (LP)
» Quadratic programming (QP)
» Second order cone programming (SOCP)
» Semi-definite programming (SDP)
» The Youla parametrization allows us to use these
algorithms for control synthesis

» Resulting controllers have high order. Order reduction will
be studied in the next lecture.




