
Recall Example: Wind Farm Control

A wind farm is controlled to minimize structural loads subject to

fixed power production:

Minimize E

∑

k

(x2k + u
2
k)

subject to u1 + . . .+ un = 0 and





ẋ1 = −x1 + u1 +w1
...

ẋn = −xn + un +wn

Compare the solutions for n = 1, n = 2, n = 10 and n = 100.
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Wind Farm Example Revisited

Define the average structural load x0 =
1
n
(x1 + ⋅ ⋅ ⋅+ xn) and the

deviation from average zk = xk − x0. Then

ẋ0 = −x0 +
1

n
(w1 + ⋅ ⋅ ⋅+wn) Ex20 =

1

2n

żk = −zk + uk +
1

n
(w1 + ⋅ ⋅ ⋅+wn)

with the optimal control law uk = −{zk = −{(xk − x0).

Hence every turbine should compute the optimal control −{xk
without constraint, then subtract the average over all turbines!

As a result

ẋk = −(1+ {)xk + {x0 +wk

The variance of the term {x0 decreases with n, so for large

farms the constraint u1 + . . .+ un = 0 is negligible. On the other

hand, for a farm with just one turbine, it would imply that u1 = 0.
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Lecture 12: Internal Model Control

Youla Parametrization

Internal Model Control

Dead Time Compensation

Section 8.4 in Glad/Ljung.
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The Q-parametrization (Youla)

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

measurements y

distubances w

Idea for lecture 12-14:

The choice of controller generally corresponds to finding Q(s),
to get desirable properties of the map from w to z:

z w

Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) is determined, a corresponding controller is found.
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The Youla Parametrization

[
Pzw Pzu
Pyw Pyu

]

−C(s)

✛ ✛

✛

✲

u

z

y

w

The closed loop transfer matrix from w to z is

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s)

where

Q(s) = C(s)
[
I + Pyu(s)C(s)

]−1

C(s) = Q(s) + Q(s)Pyu(s)C(s)

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)
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Closed loop maps for stable plants

Suppose the original plant P is stable. Then

Stabilty of Q(s) implies stability of Pzw(s) − Pzu(s)Q(s)Pyw(s)

If Q = C
[
I + PyuC

]−1
is unstable, then the closed loop is

unstable.
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Closed loop maps for unstable plants

ũ

w

y

z

P0(s)

−C0(s)

−C1(s)

[
Pzw Pzu
Pyw Pyu

]

−C1(s)

✛ ✛

✛

✲

ũ

z

y

w

In case P0(s) is unstable, let C0(s) be a stabilizing controller.

Then the previous argument can be applied with Pzw, Pzu and

Pyw representing the stabilized closed loop system.
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Next lecture: Synthesis by convex optimization

A general control synthesis problem can be stated as a convex

optimization problem in the variable Q(s). The problem could

have a quadratic objective, with linear/quadratic constraints:

Minimize
∫∞
−∞ pPzw(iω ) + Pzu(iω )

Q(iω )
︷ ︸︸ ︷
∑

k

Qkφk(iω ) Pyw(iω )p
2dω

}

quadratic objective

subject to
step response wi → zj is smaller than fi jk at time tk
step response wi → zj is bigger than �i jk at time tk

}

linear constraints

Bode magnitude wi → zj is smaller than hi jk at ω k
}

quadratic constraints

Here Q(s) =
∑
k Qkφk(s), where φ1, . . . ,φm are fixed “basis

functions” and Q0, . . . ,Qm are optimization variables. Once

Q(s) has been determined, the controller is obtained as

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)
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Example — DC-motor

+

+

+

+

20
s(s+1)C(s)

−1

z2w1

w2

z1

The transfer matrix from (w1,w2) to (z1, z2) is

Gzw(s) =

[
P

1+PC
−PC
1+PC

1
1+PC

−C
1+PC

]

where P(s) = 20
s(s+1) . How should we choose stable Pzw, Pzu,

Pyw and Q to get

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s) ?
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Stabilizing nominal feedback for DC-motor

w1

w2

z1

z2

y u



P 0 P

I 0 I

P I P




−C(s)

The plant P(s) = 20
s(s+1) is not stable, so write

C(s) = C0(s) + C1(s)

where C0(s) " 1 is a stabilizing controller.
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Redraw diagram for DC motor example

ũ

w1

w2

z1

z2

y





P 0 P

I 0 I

P I P





−1

−C1(s)

y ũ





Pc −Pc Pc
1− Pc Pc − 1 1− Pc
Pc 1− Pc Pc





−C1(s)

Gzw(s) =

[
Pc −Pc
1− Pc Pc − 1

]
+

[
Pc
1− Pc

]
Q
[
Pc 1− Pc

]

where Pc(s) = (1+ P(s))
−1P(s) = 20

s2+s+20
is stable.
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Outline

○ Youla Parametrization

• Internal Model Control

○ Dead Time Compensation
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Internal Model Control

−1

Q(s)

P0(s)

P(s)
r

u

y

+

−

Plant

Controller

Feedback is used only as the real process deviates from P(s).

The transfer function Q(s) defines how the desired input

depends on the reference signal.

When P = P0, the transfer function from r to y is P(s)Q(s).

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 12



Two equivalent diagrams

−1

Q

P0

P
r

u
y

+
−

−1

P0
r u y

Q
1−QP
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Internal Model Control — Strictly proper plants

When P = P0, the transfer function from r to y is P(s)Q(s).

Hence, ideally, one would like to put Q(s) = P(s)−1. For several

reasons this is not possible for accurate process models:

If P(s) is strictly proper, the inverse would have more zeros

than poles. Alternatively, one could choose

Q(s) =
1

(λs+ 1)n
P(s)−1

where n is large enough to make Q proper. The parameter

λ influences the speed of control.
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Internal Model Control — Zeros and delays

Once again, ideally, one would like to put Q(s) = P(s)−1.

Here are other reasons why this is often not possible:

If P(s) has unstable zeros, the inverse would be unstable.

Alternatively, one could either remove every unstable factor

(−β s+ 1) from the plant numerator before inverting, or

replace it by (β s+ 1). With the latter alternative, only the

phase is modified, not the amplitude function.

If P(s) includes a time delay, its inverse would have to

predict the future. Instead, the time delay is removed

before inverting.
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Example 1 — First order plant model

P(s) =
1

τ s+ 1

Q(s) =
1

λs+ 1
P(s)−1 =

τ s+ 1

λs+ 1

C(s) =
Q(s)

1− Q(s)P(s)
=

τ s+1
λs+1

1− 1
λs+1

=
τ

λ

(
1+

1

sτ

)

︸ ︷︷ ︸
PI controller
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Example 2 — Non-minimum phase plant

P(s) =
−β s+ 1

τ s+ 1

Q(s) =
(−β s+ 1)

(β s+ 1)
P(s)−1 =

τ s+ 1

β s+ 1

C(s) =
Q(s)

1− Q(s)P(s)
=

τ s+1
β s+1

1− (−β s+1)
(β s+1)

=
τ

2β

(
1+

1

sτ

)

︸ ︷︷ ︸
PI controller
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Outline

○ Youla Parametrization

○ Internal Model Control

• Dead Time Compensation
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Dead Time Compensation

Consider the plant model

P(s) = P1(s)e
−sτ

Let C0 = Q/(1− QP1) be the controller we would have used

without delays. Then Q = C0/(1+ C0P1).

The rule of thumb tell us to use the same Q also for systems

with delays. This gives

C(s) =
Q(s)

1− Q(s)P1(s)e−sτ
=

C0/(1+ C0P1)

1− e−sτ P1C0/(1+ C0P1)

C(s) =
C0(s)

1+ (1− e−sτ )C0(s)P1(s)

This modification of the C0(s) to account for time delays is

known as dead time compensation according to Otto Smith.
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Smith Compensator

−

−

C0(s) P1e
−sτ

P1e
−sτ

P1

y1

y

y2

+

+

r u
Plant

Controller

Idea: Make an internal model of the process (with and without

the delay) in the controller. Ideally Y and Y1 cancel each other

and use feedback from Y2 "without delay".
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Smith Compensator

−

−

C0(s) P1e
−sτ

P1e
−sτ

P1

y1

y

y2

+

+

r u
Plant

Controller

Y(s) = e−sτ
C0(s)P1(s)

1+ C0(s)P1(s)
R(s)

Delay eliminated from denominator!

Reference response greatly simplified!
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Smith Compensator — A Success Story!

−

−

C0(s) P1e
−sτ

P1e
−sτ

P1

y1

y

y2

+

+

r u
Plant

Controller

Intriguing properties

Numerous modifications

Many industrial applications

Otto J.M. Smith listed in the ISA “Leaders of the Pack” list

(2003) as one of the 50 most influential innovators since 1774.
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Example: Dead Time Compensation

Otto Smith compensator (thick) and standard PI controller (thin)

Mätsignal

Styrsignal

Börvärde
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Youla parametrization revisited

The Youla-parametrization:

P

Q(s)

w z

u y

er

Cnom

where Cnom stabilizes the [P,C]-system and

Q(s) is any stable transfer function.
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Nominal Controller

Linear system ẋ = Ax + Bu+ Bww, y= Cx + Dww

Observer

L C
∑ ∑

u
u

y
y

e

e

r

r

x̂Cnom

+

+−

−

with observer
˙̂x = Ax̂ + Bu+ K e

u = r − Lx̂

e = y− Cx̂
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Summary of Internal Model Control

Q(s) can be designed by hand for simple plants

Ideas applicable also to multivariable plants

Warning:

Cancellation of slow poles gives poor disturbance rejection
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