Course outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Lecture 6

» Controllability and observability
» Multivariable zeros
» Realizations on diagonal form

Examples: Ball in a hoop
Multiple tanks

[Glad & Ljung] Ch. 3.2-3.3, notes on course web page

Example: Ball in the Hoop

input @ (
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;/\ output 6
O+cOd+k0=0

Can you reach 6 = 7 /4, § = 0? Can you stay there?

Example: Two water tanks
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ugi X1 uglz axs a>1
X1 =—x1+u; y1=X1+ U2
X9 = —axg + U Y2 = axg + ug

Canyoureach y; = 1,y = 2? Can you stay there?

Controllability

The system
x(t) = Ax(t) + Bu(z)

is controllable , if for every x; € R” there exists u(t),t € [0,¢1],
such that x(¢1) = x; is reached from x(0) = 0.

The collection of vectors x; that can be reached in this way is
called the controllable subspace.

Controllability criteria

The following statements regarding a system
x(t) = Ax(¢) + Bu(t) of order n are equivalent:

(i) The system is controllable
(i) rank [A—AI B]l=nforallAe C
(i) rank [B AB...A™ 'B]=n

If A is exponentially stable, define the controllability Gramian

o T
s:/ eA'BBT A dt
JO

For such systems there is a fourth equivalent statement:

(iv) The controllability Gramian is non-singular

Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is in a
stable system to reach a certain state.

In fact, let 1 = [3! eAtBBT ATt dt. Then, for the system
%(t) = Ax(t) + Bu(t) to reach x(t1) = x1 from x(0) = 0 itis
necessary that

t1
/0 lu())Pdt > =TSk

Equality is attained with

u(t) = BTeAT(tl_t) Sl_lxl

Proof

t1
0< / [T STLAG-0B _ ()T (BT AT (=0 ST 1x, — u(t)|de
0

oty
= xlTSfl/O A BBT A dt Sylxy

ty ty
—2xTsy! / A6 By (1)t + / lu(t)2dt
0 0

51
=TSl + /0 u(t)?dt

s0 [yt [u(t)|?dt > xT Sy %1 with equality attained for
u(t) = BTeA" (=087 1) . This completes the proof.




Computing the controllability Gramian

The controllability Gramian S = [;° eA‘BBTeA"tdt can be
computed by solving the linear system of equations

AS+SAT + BBT =0

Proof. A change of variables gives
/ " AMBBT At = / " AR BRT AT gy
Jh Jo

Differentiating both sides with respect to 4 and inserting 2 = 0
gives

—BBT = AS + SAT

Example: Two water tanks
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ull uli
X2
X1
Uug i X1 U J/’ axg
X1 =—x1+u; X9 = —axg + U1

0 [g=t] [ gt T 1 1
The controllability Gramian S =/ { _at] [ _at] dt = [ 2 @ 1]
o & a+1

e

is close to singular when a ~ 1. Interpretation?

Example cont'd

In matlab you can solve the Lyapunov equation AS + SA” + BBT =0by 1yap

>> a=1.25 ; A=[-1 0 ; 0O -1xa ]; B=[1 ; 1] ;

>> Cs= [B A*B] , rank(Cs)
Cs =
1.0000 -1.0000
1.0000 -1.2500
ans =
2
>> S=1lyap(A,B*B’)
S =
0.5000 0.4444
0.4444 0.4000
>> invS=inv(S)

invS = e [m]
162.0 -180.0 Plotof [x1 ] 871\ ") =1
-180.0 202.5 corresponds to the states we can reach by

Jo lu(®)Pdt = 1.

Observability
The system
%(t) = Ax(t)
¥(t) = Cx(z)

is observable , if the initial state x(0) = xy € R" is uniquely
determined by the output y(t),t € [0,¢].

The collection of vectors x, that cannot be distinguished from
x = 0 is called the unobservable subspace.

Observability criteria

The following statements regarding a system #(t) = Ax(¢),
y(¢) = Cx(¢) of order n are equivalent:
(i) The system is observable
(i) rank {A _CM} =nforalldie C
C
CA
(iii) rank . =n
car

If A is exponentially stable, define the observability Gramian

0= / AT Celdy
0

For such systems there is a fourth equivalent statement:

(iv) The observability Gramian is non-singular

Interpretation of the observability Gramian

The observability Gramian measures how difficult it is in a
stable system to distinguish two initial states from each other by
observing the output.

In fact, let 01 = [i* eA"*CT Cetdt. Then, for i(t) = Ax(t), the
influence from the initial state x(0) = x( on the output
y(t) = Cx(¢) satisfies

t1
/0 Iy(6) 2dt = T 010

Computing the observability Gramian

The observability Gramian O = [;° eA"*CT CeAldt can be
computed by solving the linear system of equations

ATO+0A+CTC=0

Proof. The result follows directly from the corresponding
formula for the controllability Gramian.

Poles and zeros

Y(s) = [C(sI — A)"'B + D] U(s)
N—_— —
G(s)
For scalar systems, the points p € C where G(s) = oo are

called poles of G. They are eigenvalues of A and determine
stability. The poles of G(s)~! are called zeros of G.

This definition can be used also for square systems, but we will
next give a more general definition, involving also multiplicity.




Pole polynomial and Zero polynomial

» The pole polynomial is the least common denominator of
all minors (sub-determinants) to G(s).

» The zero polynomial is the greatest common divisor of the
maximal minors of G(s).

The poles of G are the roots of the pole polynomial.
The zeros of G are the roots of the zero polynomial.

When G(s) is square, the only maximal minor is det G(s), so
the zeros are determined from the equation

detG(s) =0

For a minimal and square realization, zeros are the solutions to

sI—A B
det{ _C D}_O

Interpretation of poles and zeros

Poles:

» Apole s = a is associated with a time function x(¢) = xoe®
» A pole s = ais an eigenvalue of A

Zeros:

» A zero s = a means that an input u(t) = uee® is blocked
» A zero describes how inputs and outputs couple to states

I

uDy

Example: Ball in the Hoop

input @ (

output 6
O+cd+ko=0

The transfer function from @ to 6 is #k. The zeroins =0

s2+es+

makes it impossible to control the stationary position of the ball.

Example: Two water tanks
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ug X1 Uy 2x2
X1 =—x1+u1 y1=X1+ U2
Xo = —2x9 + Uy Yo = 2x2 +ug
1
== 1 —s
G(s) = { 1 } detG(s) = ———
% 1 (s+1)(s+2)

The system has a zero in the origin! At stationarity y; = ys.

Plot Singular Values of G(s) Versus Frequency

»s=tf’s) e
» G=[1/(s+1) 1 ; 2/(s+2) 1]
» sigma(G) ; plot singular values

% ALT. for a certain frequency:

» i=sqrt(-1)

» w=1;

» A=[1/(i*w+1) 1 ; 2/(i*"w+2) 1]
» [U,S,V] = svd(A) “ R s

1

The largest singular value of G(iw) = |1 is fairly

- 1
iw+2

constant. This is due to the second input. The first input makes

it possible to control the difference between the two tanks, but

mainly near @ = 1 where the dynamics make a difference.

Singular values - continued

Revisit example from lecture notes 2:

The largest singularvalue of a matrix A, 6(A) = omax(A) is the
square root of the largest eigenvalue of the matrix A*A,

(A) = T A A)

Q: For frequency specifications (see prev lectures); When are
we interested in the largest amplification and when are we
interested in the smallest amplification?

Realization on diagonal form

Consider a transfer matrix with partial fraction expansion

“\ GB;
— 11 D
G(s) ;s—pi +

This has the realization

pll 0 Bl
x(t) = x(6)+ | ¢ | ud)
0 pnI Bn
y(t) = [01 C,L] x(t) + Du(t)

The rank of the matrix C;B; determines the necessary number
of columns in B; and the multiplicity of the pole p;.

s+1 s+1 s+3 | —
3 _ 3 1 -
5+2 s+4 s+2

Example: Realization of Multi-variable system

To find state space realization for the system

1 2
G(S) — ? (s+l)1(s+3)
(s+2)(s+4) s+2

write the transfer matrix as

s+1 s+2 s+3 s+4

n, oo 9 [l oo [fod

This gives the realization

xl(t) -1 0 0 0 xl(t) 1 1
xz(t) _ 0 -2 0 0 xz(t) 3 1 ul(t)
B> o 0o =3 ol |xwu@]Tlo —1 [ug(t)]
a(t) 0 0 o0 -4 |u@®] |[-3 o

t 1010
BQ(SF[O 10 1] *(®)




