Course outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 6



@ Controllability and observability
@ Multivariable zeros
@ Realizations on diagonal form

Examples: Ballin a hoop
Multiple tanks

[Glad & Ljung] Ch. 3.2-3.3, notes on course web page
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Example: Ball in the Hoop
input @ (

! \
\ \

Y, output 6
O+cO+k0=0

Can you reach 8 = /4, 6 = 0? Can you stay there?
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Example: Two water tanks

— =

ux uli
X2
X1
— 1|1
Uy L X1 Us \L axy a>1
X1 =—x1+u y1=x1+ug
X9 = —axg + Uq Yo = ax9 + Uy

Canyoureach y; = 1,yy = 2? Can you stay there?
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Controllability

The system
x(t) = Ax(t) + Bu(t)

is controllable , if for every x; € R" there exists u(t),t € [0, ¢1],
such that x(¢1) = x; is reached from x(0) = 0.

The collection of vectors x; that can be reached in this way is
called the controllable subspace.
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Controllability criteria

The following statements regarding a system
x(t) = Ax(t) + Bu(t) of order n are equivalent:

(i) The system is controllable
(i) rank [A—AI B]l=nforallle C
(i) rank [B AB...A"1B] =n

If A is exponentially stable, define the controllability Gramian

o0
S — / ABBT Aty
0

For such systems there is a fourth equivalent statement:

(iv) The controllability Gramian is non-singular

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 6



Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is in a
stable system to reach a certain state.

In fact, let S; = fotl eABBT At dt. Then, for the system
x(t) = Ax(t) + Bu(t) to reach x(t1) = x; from x(0) =0 itis
necessary that

131
/ () 2dt > 1T S Lxy
0
Equality is attained with

u(t) = BTeAT(tl_t)Sl_lxl
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5]
0< / T STeAB=DB _ ()[BT AT 6081y, — u(d)|dt
0
31
=TSy / A'BBT A dt STlxy
0
t1 51
—2xT ST / eA(tl_t)Bu(t)dt+/ lu(t)|?dt
0 0
t
=—x{Sl_1x1—I-/ lu(t)|?dt
0

SO fol lu(t)|?dt > xT S71x; with equality attained for
u(t) = BTeA (1= "‘)Sl 1x1. This completes the proof.
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Computing the controllability Gramian

The controllability Gramian S = [° eA’BBTeA"d¢ can be
computed by solving the linear system of equations

AS+SAT + BBT =0

Proof. A change of variables gives

/ " ABBTA s = / T AW B BT AN g
h 0

Differentiating both sides with respect to A and inserting 2 = 0
gives

—BBT = AS + SAT
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Example: Two water tanks

.

uli uli
X2
X1
—= I
175 i X1 125)] \L axo
X1 =—x1+uq X9 = —aXg + U1

e—a

o0 [ o=t et T 1 1

The controllability Gramian S =/ [ —at:| { t} dt = [ § ¢ 1}
e a1
0 a+1 2a

is close to singular when a ~ 1. Interpretation?
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Example cont'd

In matlab you can solve the Lyapunov equation AS + SAT + BBT =0 by 1yap

>> a=1.25 ; A=[-1 0 ; 0 -1xa ]; B=[1 ; 1] ;

>> Cs= [B Ax*B] , rank(Cs)

Cs =
1.0000 -1.0000
1.0000 -1.2500

ans =

2

>> S=1yap(A,B*B’)

S =
0.5000 0.4444
0.4444 0.4000

>> invS=inv(S)

invS = _1 x| _
162.0 -180.0 Plotof [z x]-§ {xz} =1
-180.0 202.5 corresponds to the states we can reach by

Jo lu@)Pdt = 1.
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Observability

The system

i(t) = Ax(?)
y(t) = Cx(¢)

is observable , if the initial state x(0) = xo € R” is uniquely
determined by the output y(t),¢ € [0, ¢1].

The collection of vectors x( that cannot be distinguished from
x = 0 is called the unobservable subspace.
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Observability criteria

The following statements regarding a system x(¢) = Ax(t),
y(¢) = Cx(t) of order n are equivalent:

(i) The system is observable

(i) rank A_“] —nforall A€ C

C

Cc
CA

(iii) rank =n

_CA'HI
If A is exponentially stable, define the observability Gramian

0 = / AT Cetdt
0

For such systems there is a fourth equivalent statement:

(iv) The observability Gramian is non-singular
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Interpretation of the observability Gramian

The observability Gramian measures how difficult it is in a
stable system to distinguish two initial states from each other by
observing the output.

In fact, let 01 = [;* eA"*CT Cetdt. Then, for %(t) = Ax(t), the
influence from the initial state x(0) = x¢ on the output
y(t) = Cx(t) satisfies

1
/0 y(0)2dt = 2501,
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Computing the observability Gramian

The observability Gramian O = [° eA"*CT CeAldt can be
computed by solving the linear system of equations

ATO+0A+CTCc=0

Proof. The result follows directly from the corresponding
formula for the controllability Gramian.
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Poles and zeros

Y(s) = [C(sI — A)"'B + D] U(s)

G(s)

For scalar systems, the points p € C where G(s) = oo are
called poles of G. They are eigenvalues of A and determine
stability. The poles of G(s)~! are called zeros of G.

This definition can be used also for square systems, but we will
next give a more general definition, involving also multiplicity.
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Pole polynomial and Zero polynomial

@ The pole polynomial is the least common denominator of
all minors (sub-determinants) to G(s).

@ The zero polynomial is the greatest common divisor of the
maximal minors of G(s).

The poles of G are the roots of the pole polynomial.
The zeros of G are the roots of the zero polynomial.

When G (s) is square, the only maximal minor is det G(s), so
the zeros are determined from the equation

detG(s) =0

For a minimal and square realization, zeros are the solutions to

sI— A B]:O

det[ _C D
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Interpretation of poles and zeros

Poles:

@ A pole s = a is associated with a time function x(¢) = xpe®
@ Apole s = a is an eigenvalue of A

Zeros:

@ A zero s = a means that an input u(¢) = uge® is blocked
@ A zero describes how inputs and outputs couple to states
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Example: Ball in the Hoop
input @ (

output 9
O+co+k0=0

The transfer function from w to 6 is m The zeroins =0
makes it impossible to control the stationary position of the ball.
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Example: Two water tanks

uli uli
X2
X1
uzl X1 uzi 2x9
X = —x1+Uu; y1=x1+uUg
X9 = —2%9 + U1 Yo = 2% + Uy
—s

S 1 —
G(s) = Li J et GE) = i DE )

The system has a zero in the origin! At stationarity y; = ys.
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Plot Singular Values of G(s) Versus Frequency

» s=tf(’s’) |
» G=[1/(s+1) 1 ; 2/(s+2) 1]

» sigma(Q) ; plot singular values g T
% ALT. for a certain frequency: “ )

» i=sqrt(-1)

> W=1 ,

» A=[1/(i"w+1) 1 ; 2/(i*w+2) 1]

» [U,S,V] = svd(A)

10
Frequency (rad/sec)

1
The largest singular value of G(iw) = [m’zﬂ ﬂ is fairly

w+2
constant. This is due to the second input. The first input makes
it possible to control the difference between the two tanks, but

mainly near @ = 1 where the dynamics make a difference.
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Singular values - continued

Revisit example from lecture notes 2:

The largest singularvalue of a matrix A, 6(A) = Omax(A) is the
square root of the largest eigenvalue of the matrix A*A,
0(A) = V/Amax(A*A)

Q: For frequency specifications (see prev lectures); When are
we interested in the largest amplification and when are we
interested in the smallest amplification?
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Realization on diagonal form

Consider a transfer matrix with partial fraction expansion

G(s) = Z NG

This has the realization

pII 0 Bl
x(t) = x(t)+ | | u()
0 pnl B,
y(@) =[C1 ... GCy]x(¢) + Du(z)

The rank of the matrix C; B; determines the necessary number
of columns in B; and the multiplicity of the pole p;.
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Example: Realization of Multi-variable system

To find state space realization for the system

1 2
G(S) . ? (s+1)1(s+3)
(5+2)(s+4) s+2

write the transfer matrix as

3%13 S+11:8+13]:H[1 1] M[‘s 1}_{(1)}[0 1}_m[3 0]

3

prs; R o s+1 s+2 s+3 s+4

This gives the realization

w2@®] [-1 0 o0
Kot
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@ Controllability and observability
@ Multivariable zeros
@ Realizations on diagonal form

Examples: Ballin a hoop
Multiple tanks

[Glad & Ljung] Ch. 3.2-3.3, notes on course web page
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