Course Outline

L1-L5 Specifications, models and loop-shaping by hand
1. Introduction and system representations
2. Stability and robustness
3. Specifications and disturbance models
4. Control synthesis in frequency domain
5. Case study

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Yesterdays lecture

> Introduction/examples
> Overview of course
> Review linear systems
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time-domain
models

» Review of
frequency-
domain
models

Lecture 2: Stability and Robustness

» Stability

» Robustness and sensitivity

» Small gain theorem

Demo: "Inverted pendulum”

Stability is crucial
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Stability of autonomous systems

The autonomous system

dx
i Ax(2)

is called exponentially stable if the following equivalent
conditions hold

1. There exist constants «, f > 0 such that
|2 ()] < e P|x(0)] fort >0

2. All eigenvalues of A are in the left half plane (LHP), that is
all eigenvalues have negative real part.

3. All roots of the polynomial det(sI — A) are in the LHP.

Eigenvalues determine stability

The matrix A can always be written on the form

A1 * eht #
A=U U™'. Henceed=U Ut
0 An 0 et

The number 14,..., 4, are the eigenvalues of A.

e4! decays exponentially if and only if Re{1;} < 0 for all &.

Stability of input-output maps

The transfer function G(s) of a continuous time system, is said
to be input-output stable (I/O-stable, or often just called
“stable”) if the following equivalent conditions hold:

» All poles of G have negative real part (G is Hurwitz stable)
» The impulse response of G decays exponentially.

Warning: There may be unstable pole-zero cancellations
(which also render the system either uncontrollable and/or
unobservable) and these may not be seen in the transfer
function!!

For discrete time systems the corresponding conditions are : a pulse transfer function
G(2) of a discrete time system

> All poles of G are inside the unit circle (G is Schur stable).
> The pulse response of G decays exponentially.

Stability of feedback loops
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The closed loop system is input-output stable if and only if all
solutions to the equation

1+G0(S) =0

are in the left half plane (i.e. has negative real part).




The Nyquist criterion

If Go(s) is stable, then the closed loop system [1 + Go(s)] ! is
stable if and only if the Nyquist curve does not encircle —1

The difference between the number of unstable poles in
[1+ Go(s)]~* and the number of unstable poles in Go(s) is
equal to the number of times the point —1 is encircled by the
Nyquist plot in the clockwise direction.
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NOTE: nyquist-plot cmd in Matlab plots for both positive and negative frequencies!

Sensitivity and Robustness

» How sensitive is the closed loop system to model errors?
» How do we measure the “distance to instability”?

» Is it possible to guarantee stability for all systems within
some distance from the ideal model?

Amplitude and phase margin

Amplitude margin A,,

arg G(imo) = —180°, |G(imy)| = Ai
m
Phase margin ¢,,

|G(iw:)| =1, argG(iw.) = ¢, —180°

Gain curve

Phase Curve

Mini-problem
sg-(:c:-ll—)l e—sT
-1

Nominally 2 = 1, ¢ = 1 and T' = 0. How much margin is there in
each of the parameters before the system becomes unstable?
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How sensitive is T' to changes in P?

_ P(s)C(s)
1+ P(s)C(s)
N—— ————

T(s)

Y(s) R(s)

af _d (1 \__€C __ T
dP ~ dp 1+PC)~ (1+PCy? ~ P(1+PC)

Define the sensitivity function, S:

_d(logT) dT/T 1
" d(logP) ~ dP/P  1+PC

and the complementary sensitivity function 7':

PC
1+PC

T =1-S=

Note that the

» complementary sensitivity function T is the transfer
function G,_,,

» sensitivity function S is the transfer function G,

S+T=1

Note: there are four different transfer functions for this closed-loop system and all have
to be stable for the system to be stable!

It may be OK to use an unstable controller C

Nyquist plot illustration

The sensitivity function measures the distance from the Nyquist
plot to —1.
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Definition of vector norm

For x € R", we use the “Lg-norm”

x| = VaTo = \/af + - + a2

Definition of matrix norm

For M € R"*" we use the “Ls-induced norm”

| M x| xTMTMx =
M| :=sup — 2 = 2 o AMT™
122]] Sup T = sup T ( )

Different gains in different directions: [yl] = {2 4} [ul]
Yo 0 3] |uz

T

luj=1

Input u=[0.309  0.951
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Here A(MT M) denotes the largest eigenvalue of MTM. The
fraction |[Mx|/|x| is maximized when «x is a corresponding =or
eigenvector.
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Example: matlab-demo
Example The Le-norm of a signal
Matlab-code for singular value decomposition of the >> A=[2 4 ; 03]
matrix A=
2 4 2 4
A= [0 3} 0 3 n « .
> [U.S,V]=sva(a) For y(¢) € R" the “Lg-norm
SVD: U=
A=U-S.V*

where both the matrices U and V are unitary (i.e.
have orthonormal columns s.t. V*-V =1)and S is
the diagonal matrix with (sorted decreasing) singular
values o;.

Multiplying A with a input vector along the first col-
umnin V gives

AV =USV" V=
1
=US M =Uiy 01
That is, we get maximal gain o in the output direc-
tion Uy.y) if we use an input in direction V(.5 (and

minimal gain o, = oy if we use the last column
Vien) = Vi2)-

0.8416  -0.5401
0.5401 0.8416

S =
5.2631 0
0 1.1400
vV =
0.3198  -0.9475
0.9475 0.3198
>> AxV(:,1)
ans =
4.4296
2.8424

>> U(:,1)*S(1,1)
ans =
4.4296
2.8424

o0 . 1 o0
Iyl =1/ [ @Pde isequalto /oo [ osie)Pde
JO J —o0

The equality is known as Parseval’s formula

The Ly-gain of a system For a system § with input » and
output S(u), the Ly-gain is defined as

[5Gl

flell2

Sl := sup
u

Miniproblem

What are the gains of the following systems?

- (@) = —u()
2. yt)=u(t—T)

3.yt = /Otu(r)dr

4 )= /0 "y (r)de

(a sign shift)
(a time delay)

(an integrator)

(a first order filter)

The Ls-gain from frequency data

Consider a stable system § with input « and output S(z) having
the transfer function G(s). Then, the system gain

151 i sup 5@l

w o lll2

isequalto |G| = sup|G(iw)|
[0

Proof. Let y = $(u). Then
g 1 /Oo TSN 5 /Oo T FANT 2 2
"= 52 /. |1L(io)de = 5 /. IG(o)F - |Lu(io)Pdo < (|GGl

The inequality is arbitrarily tight when u(¢) is a sinusoid near
the maximizing frequency.




Example: Consider the transfer function matrix G (iw)

2 4

— s+1 2s+1
G(s) = : 3

s2+01s+1 s+1

>> s=tf(’s?)
>> G=[ 2/(s+1) 4/(2xs+1); s/(s72+0.1xs+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain
ans =
10.3577

singular Values

10
Frequency (rad/sec)

Figure : The singular values of the tranfer function matrix (prev slide).
Note that G(0)=[2,4 ; 0 3] which corresponds to M in the
SVD-example above. |G|« = 10.3577.

Robustness

How large perturbations A(iw) can be tolerated without
instability?

v w

T A(io) —l

G(iw)

C(iw)

The Small Gain Theorem

S2 —

Assume that §; and Sg are input-output stable. If
[|S1]] - [IS2]l < 1, then the gain from (r1,rg) to (e1, e2) in the
closed loop system is finite.

Proof

Define [lyllr = \/ 5 ly(¢)[dz. Then IS®)llz < ISl - Iyl

e1 =r1+ Sa(re + S1(e1))
leallr < el + 152l (el + 1Sl - el

lIrallz + llS2ll - lIrallz

llesllr <
1= ISl - ISl

This shows bounded gain from (rq,73) to e;.

The gain to eg is bounded in the same way.

Application to robustness analysis

The transfer function from w to v is

C(in)G(iw)
1+ Ciw)G (i)

Hence the small gain theorem guarantees stability if

ecmecal)

an<Gw
(0]
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