
Course Outline

L1-L5 Specifications, models and loop-shaping by hand
1. Introduction and system representations
2. Stability and robustness
3. Specifications and disturbance models
4. Control synthesis in frequency domain
5. Case study

L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

Yesterdays lecture

◮ Introduction/examples
◮ Overview of course

◮ Review linear systems

◮ Review of
time-domain
models

◮ Review of
frequency-
domain
models

Lecture 2: Stability and Robustness

◮ Stability

◮ Robustness and sensitivity

◮ Small gain theorem

Demo: "Inverted pendulum"

Stability is crucial

◮ bicycle
◮ JAS 39 Gripen
◮ Mercedes A-class
◮ ABS brakes

Stability of autonomous systems

The autonomous system

dx
dt
= Ax(t)

is called exponentially stable if the following equivalent
conditions hold

1. There exist constants α , β > 0 such that

px(t)p ≤ α e−β tpx(0)p for t ≥ 0

2. All eigenvalues of A are in the left half plane (LHP), that is
all eigenvalues have negative real part.

3. All roots of the polynomial det(sI − A) are in the LHP.

Eigenvalues determine stability

The matrix A can always be written on the form

A = U




λ1 ∗
. . .

0 λn


 U−1. Hence eAt = U




eλ1t ∗
. . .

0 eλnt


 U−1.

The number λ1, . . . , λn are the eigenvalues of A.

eAt decays exponentially if and only if Re{λ k} < 0 for all k.

Stability of input-output maps

The transfer function G(s) of a continuous time system, is said
to be input-output stable (I/O-stable, or often just called
“stable”) if the following equivalent conditions hold:

◮ All poles of G have negative real part (G is Hurwitz stable)
◮ The impulse response of G decays exponentially.

Warning: There may be unstable pole-zero cancellations
(which also render the system either uncontrollable and/or
unobservable) and these may not be seen in the transfer
function!!

For discrete time systems the corresponding conditions are : a pulse transfer function
G(z) of a discrete time system

◮ All poles of G are inside the unit circle (G is Schur stable).
◮ The pulse response of G decays exponentially.

Stability of feedback loops

♥ G0✲✲

−1

✲

✛

✻
Σ

The closed loop system is input-output stable if and only if all
solutions to the equation

1+ G0(s) = 0

are in the left half plane (i.e. has negative real part).
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The Nyquist criterion

If G0(s) is stable, then the closed loop system [1+ G0(s)]−1 is
stable if and only if the Nyquist curve does not encircle −1

The difference between the number of unstable poles in
[1+ G0(s)]−1 and the number of unstable poles in G0(s) is
equal to the number of times the point −1 is encircled by the
Nyquist plot in the clockwise direction.
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NOTE: nyquist-plot cmd in Matlab plots for both positive and negative frequencies!

Sensitivity and Robustness

◮ How sensitive is the closed loop system to model errors?
◮ How do we measure the “distance to instability”?
◮ Is it possible to guarantee stability for all systems within

some distance from the ideal model?

Amplitude and phase margin

Amplitude margin Am

arg G(iω 0) = −180○, pG(iω 0)p =
1

Am

Phase margin φm

pG(iω c)p = 1, arg G(iω c) = φm − 180○
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Mini-problem

❤ k(s+1)
s2+cs+1 e−sT

−1

✲ ✲ ✲ ✲

✛

✻

Nominally k = 1, c = 1 and T = 0. How much margin is there in
each of the parameters before the system becomes unstable?
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Gm = Inf,  Pm = 109.47 deg (at 1.4142 rad/sec)
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How sensitive is T to changes in P?

❤ C(s) P(s)

−1

✲ ✲ ✲ ✲

✛

✻

r y

Y(s) =
P(s)C(s)

1+ P(s)C(s)︸ ︷︷ ︸
T(s)

R(s)

dT
dP

=
d

dP

(
1−

1
1+ PC

)
=

C
(1+ PC)2

=
T

P(1+ PC)

Define the sensitivity function, S:

S :=
d(log T)
d(log P)

=
dT/T
dP/P

=
1

1+ PC

and the complementary sensitivity function T :

T := 1− S =
PC

1+ PC

r
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Note that the

◮ complementary sensitivity function T is the transfer
function Gr→y

◮ sensitivity function S is the transfer function Gm→y

S+ T = 1

Note: there are four different transfer functions for this closed-loop system and all have
to be stable for the system to be stable!

It may be OK to use an unstable controller C

Nyquist plot illustration

The sensitivity function measures the distance from the Nyquist
plot to −1.

R−1 = sup
ω

∣∣∣∣
1

1+ P(iω )C(iω )

∣∣∣∣
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P(iω )C(iω )
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Lecture 2

◮ Stability

◮ Robustness and sensitivity

◮ Small gain theorem

Definition of vector norm

For x ∈ Rn, we use the “L2-norm”

pxp =
√

xT x =
√

x2
1 + ⋅ ⋅ ⋅+ x2

n

Definition of matrix norm

For M ∈ Rn$n, we use the “L2-induced norm”

qMq := sup
x

pM xp
pxp

= sup
x

√
xT M T M x

xT x
=

√
λ̄(M T M)

Here λ̄(M T M) denotes the largest eigenvalue of M T M . The
fraction pM xp/pxp is maximized when x is a corresponding
eigenvector.

Different gains in different directions:
[

y1
y2

]
=

[
2 4
0 3

] [
u1
u2

]
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(red):eigenvectors ; (blue): V ; (green): U    A=U*S*VT 

y 2

y=Gu = [4.42      2.85]T,      |y|= 5.26

Example: matlab-demo

Example
Matlab-code for singular value decomposition of the
matrix

A =
[

2 4
0 3

]

SVD :
A = U ⋅ S ⋅ V ∗

where both the matrices U and V are unitary (i.e.
have orthonormal columns s.t. V ∗ ⋅ V = I) and S is
the diagonal matrix with (sorted decreasing) singular
values σ i.
Multiplying A with a input vector along the first col-
umn in V gives

A ⋅ V(:,1) = U SV ∗ ⋅ V(:,1) =

= U S
[

1
0

]
= U(:,1) ⋅ σ 1

That is, we get maximal gain σ 1 in the output direc-

tion U(:,1) if we use an input in direction V(:,1) (and

minimal gain σ n = σ 2 if we use the last column

V(:,n) = V(:,2)).

>> A=[2 4 ; 0 3]
A =

2 4
0 3

>> [U,S,V]=svd(A)
U =

0.8416 -0.5401
0.5401 0.8416

S =
5.2631 0

0 1.1400
V =

0.3198 -0.9475
0.9475 0.3198

>> A*V(:,1)
ans =

4.4296
2.8424

>> U(:,1)*S(1,1)
ans =

4.4296
2.8424

The L2-norm of a signal

For y(t) ∈ Rn the “L2-norm”

qyq2 :=

√∫ ∞

0
py(t)p2dt is equal to

√
1

2π

∫ ∞

−∞
pLy(iω )p2dω

The equality is known as Parseval’s formula

The L2-gain of a system For a system S with input u and
output S(u), the L2-gain is defined as

qSq := sup
u

qS(u)q2

quq2

Miniproblem

What are the gains of the following systems?

1. y(t) = −u(t) (a sign shift)
2. y(t) = u(t− T) (a time delay)

3. y(t) =
∫ t

0
u(τ )dτ (an integrator)

4. y(t) =
∫ t

0
e−(t−τ )u(τ )dτ (a first order filter)

The L2-gain from frequency data

Consider a stable system S with input u and output S(u) having
the transfer function G(s). Then, the system gain

qSq := sup
u

qS(u)q2

quq2
is equal to qGq∞ := sup

ω
pG(iω )p

Proof. Let y= S(u). Then

qyq2 =
1

2π

∫ ∞

−∞

pLy(iω )p2dω =
1

2π

∫ ∞

−∞

pG(iω )p2 ⋅ pLu(iω )p2dω ≤ qGq2
∞quq

2

The inequality is arbitrarily tight when u(t) is a sinusoid near
the maximizing frequency.
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Example: Consider the transfer function matrix G(iω )

G(s) =




2
s+ 1

4
2s+ 1

s
s2 + 0.1s+ 1

3
s+ 1




>> s=tf(’s’)
>> G=[ 2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain

ans =
10.3577

Singular Values
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System: G
Frequency (rad/sec): 0.0106
Singular Value (abs): 5.26

System: G
Frequency (rad/sec): 0.0101
Singular Value (abs): 1.14

System: G
Frequency (rad/sec): 0.0106
Singular Value (abs): 1.14

Figure : The singular values of the tranfer function matrix (prev slide).
Note that G(0)=[2,4 ; 0 3] which corresponds to M in the
SVD-example above. qGq∞ = 10.3577.

Robustness

How large perturbations ∆(iω ) can be tolerated without
instability?

❤ ❤G(iω )

C(iω )

∆(iω )

✻
✲ ❄

✛

✲

✲

✲ ✲

v w

The Small Gain Theorem

replacements
r1

r2

e1

e2

S1

S2

Assume that S1 and S2 are input-output stable. If
qS1q ⋅ qS2q < 1, then the gain from (r1, r2) to (e1, e2) in the
closed loop system is finite.

Proof

Define qyqT =

√∫ T
0 py(t)p2dt. Then qS(y)qT ≤ qSq ⋅ qyqT .

e1 = r1 + S2(r2 + S1(e1))

qe1qT ≤ qr1qT + qS2q
(
qr2qT + qS1q ⋅ qe1qT

)

qe1qT ≤
qr1qT + qS2q ⋅ qr2qT

1− qS1q ⋅ qS2q

This shows bounded gain from (r1, r2) to e1.

The gain to e2 is bounded in the same way.

Application to robustness analysis

❞ ❞G(iω )

C(iω )

∆(iω )

✻
✲ ❄

✛

✲

✲

✲ ✲

v w

The transfer function from w to v is

C(iω )G(iω )
1+ C(iω )G(iω )

Hence the small gain theorem guarantees stability if

q∆q∞ <
(

sup
ω

∥∥∥∥
C(iω )G(iω )

1+ C(iω )G(iω )

∥∥∥∥
)−1

Lecture 2

◮ Stability

◮ Robustness and sensitivity

◮ Small gain theorem
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