Course Outline

L1-L5 Specifications, models and loop-shaping by hand
@ Introduction and system representations
@ Stability and robustness
© Specifications and disturbance models
@ Control synthesis in frequency domain
@ Case study

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach
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Yesterdays lecture

@ Introduction/examples
@ Overview of course
@ Review linear systems

@ Time-domain
models

@ Frequency-domain
models
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Lecture 2: Stability and Robustness

@ Stability
@ Robustness and sensitivity

@ Small gain theorem

Demo: "Inverted pendulum”
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Stability is crucial

@ bicycle

@ JAS 39 Gripen

@ Mercedes A-class
@ ABS brakes
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Stability of autonomous systems

The autonomous system

is called exponentially stable if the following equivalent
conditions hold

@ There exist constants «, 8 > 0 such that
lx(t)] < arePx(0)]| for¢ >0

@ All eigenvalues of A are in the left half plane (LHP), that is
all eigenvalues have negative real part.

@ All roots of the polynomial det(sI — A) are in the LHP.
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Eigenvalues determine stability

The matrix A can always be written on the form

ll * e
A=U Ul. Henceet=U UL
0 An 0 et

The number A4,...,4, are the eigenvalues of A.

et decays exponentially if and only if Re{1;} < 0 for all %.
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Stability of input-output maps

The transfer function G(s) of a continuous time system, is said
to be input-output stable (I/0O-stable, or often just called
“stable”) if the following equivalent conditions hold:

@ All poles of G have negative real part (G is Hurwitz stable)
@ The impulse response of G decays exponentially.
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Stability of input-output maps

The transfer function G(s) of a continuous time system, is said
to be input-output stable (I/0O-stable, or often just called
“stable”) if the following equivalent conditions hold:

@ All poles of G have negative real part (G is Hurwitz stable)
@ The impulse response of G decays exponentially.

Warning: There may be unstable pole-zero cancellations
(which also render the system either uncontrollable and/or
unobservable) and these may not be seen in the transfer
function!!

For discrete time systems the corresponding conditions are : a pulse transfer function
G(2) of a discrete time system

@ All poles of G are inside the unit circle (G is Schur stable).
@ The pulse response of G decays exponentially.
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Stability of feedback loops

Go

Y

|
—
A

The closed loop system is input-output stable if and only if all
solutions to the equation

1+G0(8) =0

are in the left half plane (i.e. has negative real part).
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The Nyquist criterion

If Go(s) is stable, then the closed loop system [1 4+ Gy (s)] L is
stable if and only if the Nyquist curve does not encircle —1

The difference between the number of unstable poles in

[1 + Go(s)]~! and the number of unstable poles in Gy(s) is
equal to the number of times the point —1 is encircled by the
Nyquist plot in the clockwise direction.

Imaginary Axis
(o]

-1 -0.5 0 0.5

Real Axis

NOTE: Matlab gives Nyqguist plot for both positive and negative frequencies!
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Sensitivity and Robustness

@ How sensitive is the closed loop system to model errors?
@ How do we measure the “distance to instability”?

@ Is it possible to guarantee stability for all systems within
some distance from the ideal model?
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Amplitude and phase margin

Amplitude margin A,,

arg G (iwy) = —180°, |G (imy)| = Ai

m

Phase margin ¢,,

|G(iw:)| =1, argG(iw.) = ¢, — 180°

Im
Il i
Gain curve
1A, X
Re ]
: 1 Phase ¢ r\eK
b G(ia)) umﬂ] T T T T T GT T T T T T
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Mini-problem

k(S-I—l) —sT _
s2+cs+1

-1

Nominally 2 = 1, ¢ =1 and T = 0. How much margin is there in
each of the parameters before the system becomes unstable?

Gm = Inf, Pm =109.47 deg (at 1.4142 rad/sec)

o o *°
ko]
> 1
=
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Re Freqgtiency
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Mini-problem — Stability margins

Gm = Inf, Pm =109.47 deg (at 1.4142 rad/sec)
15
1 J\
0.5

15 -180

Nyquist diagram

-0.5

Im
PhaseMagnitude

-1.5

0 0.5 1
Re Frequency

Figure : Nyquist/Bode plots for the nominal transfer function (sgijsi)l)

For k = ¢ = 1 the open loop transfer function is
s+ 1 e—sT
s2+s+1

The phase margin is 109 - 155 rad at @ = 1.4 rad/s.
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Mini-problem — Stability margins

Gm = Inf, Pm =109.47 deg (at 1.4142 rad/sec)
15
1 J\
0.5

15 -180

Nyquist diagram
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Re Frequency

Figure : Nyquist/Bode plots for the nominal transfer function (sgijsi)l)

For k = ¢ = 1 the open loop transfer function is
s+ 1 e—sT
s2+s+1
The phase margin is 109 - 155 rad at @ = 1.4 rad/s.
A time-delay T corresponds to a phase-delay arg{e T} = —wT
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Mini-problem — Stability margins

Gm = Inf, Pm =109.47 deg (at 1.4142 rad/sec)
15
1 J\
0.5

15 -180

Nyquist diagram

-0.5

Im
PhaseMagnitude

-1.5

0 0.5 1
Re Frequency

Figure : Nyquist/Bode plots for the nominal transfer function 52

For £ = ¢ = 1 the open loop transfer function is
s+1 _.p
S2rs+l’
The phase margin is 109 - 155 rad at @ = 1.4 rad/s.
A time-delay T corresponds to a phase-delay arg{e T} = —wT
Thus the time-delay margin is 109 - %5/1.4 ~ 1.35 sec.
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Mini-problem — Stability margins

Closed loop without delay (7' = 0):

P(s)C(s)
1+ P(s)C(s)

k(s+1)
s24cs+1

k(s +1) k(s +1)

Gcl (8) =

s24+cs+1+ks+k s2+s(k+c)+ (1+k)
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How sensitive is T' to changes in P?

C(s) P(s) -

_ P(s)C(s)
Y() = 15 pE)C0)
L £ 5% -5

T(s)

R(s)
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ar _d (1L \__Cc _ T
dP ~ dP 1+PC)~ (1+PC)2_ P(1+PC)

Define the sensitivity function, S:

_d(logT) dT/T 1
" d(logP)  dP/P 1+ PC

and the complementary sensitivity function 7'
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Note that the

@ complementary sensitivity function 7' is the transfer
function G,_,,

@ sensitivity function S is the transfer function G,—,,

S+T=1

Note: there are four different transfer functions for this closed-loop system and all have
to be stable for the system to be stable!

It may be OK to use an unstable controller C

Automatic Control LTH, 2013 FRTN10 Mu able Control, Lecture 2



Nyquist plot illustration

The sensitivity function measures the distance from the Nyquist
plot to —1.

R~' = sup
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@ Stability
@ Robustness and sensitivity

@ Small gain theorem
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How large perturbations A(iw) can be tolerated without
instability ?

v

F‘ A(iw) A
G(iw) j)

C(iw)
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Vector Norm and Matrix Norm

For x € R", we use the “Ly-norm”

x| = VaTa = /22 + - + «2

For M € R™*", we use the “Ly-induced norm”

TMTM
1M = sup \/x Y\ AT M)

Here A(MT M) denotes the largest eigenvalue of MTM. The
fraction |M x|/|x| is maximized when x is a corresponding
eigenvector.
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Different gains in different directions: B j

b 3L

Input u=[0.309  0.951]", |u|=1
;

15

y=Gu=[4.42 2.85]', |y|=5.26

y2
=)
T

(red):eigenvectors ; (blue): V ; (green): U A=U*S*/
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Example
Matlab-code for singular value decomposition of the

matrix
2 4
a=[3 3]

A=U-S8-V*

SVD :

where both the matrices U and V are unitary (i.e.
have orthonormal columns s.t. V*-V =1)and S is
the diagonal matrix with (sorted decreasing) singular
values o;.

Multiplying A with a input vector along the first col-
umn in V gives

A N V(:,l) — USV* 3 V(:,l) =
1
=US |:0:| = U(:,l) 01
That is, we get maximal gain o in the output direc-

tion Uy, 1y if we use an input in direction V. ;) (and
minimal gain o, = oy if we use the last column

Automatic Control LTH, 2013 FRTN10

>> A=[2 4 ; 0 3]
A=
2 4
0 &
>> [U,S,V]=svd(A)
U =
0.8416 -0.5401
0.5401 0.8416

S =
5.2631 0
0 1.1400
v:
0.3198 -0.9475
0.9475 0.3198
>> A*V(:,1)
ans =
4.4296
2.8424

>> U(:,1)%S(1,1)

4.4296
2.8424
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The Ls-norm of a signal

For y(¢t) € R" the “Lg-norm”

llyll2 :=1// ly(#)|2dt is equal to \/217[/ |Ly(iw)|?dw
0 —o0

The equality is known as Parseval’s formula

The Ly-gain of a system For a system § with input « and
output S(u), the Lo-gain is defined as

15 () l2

el

IS]] := sup
u
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Miniproblem

What are the gains of the following systems?

1. y(t) = —u(t) (a sign shift)
yit)=u(t—-T) (a time delay)
3. y(t) = / \ u(7)dr (an integrator)
0

t
4. () :/ e~ y(r)dr  (afirst order filter)
0

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 2



The Ly-gain from frequency data

Consider a stable system § with input » and output S(z) having
the transfer function G(s). Then, the system gain

15 (@)ll2

el

|S]| := sup isequalto  [|G||s := sup |G (iw)|
u [0}

Proof. Let y = S(u). Then
2 _ i /OO - N2 i i /oo SNt RN 2 2
bl = 57 | 1to)Pdo= g | 1GG) |u(io)Pdo < |GIE, ||

The inequality is arbitrarily tight when w(¢) is a sinusoid near
the maximizing frequency.
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Example: Consider the transfer function matrix G (i)

2 4
= s+1 2s +1
G(s) = s 3

s2401s+1 s+1

>> s=tf(’s’)
>> G=[ 2/(s+1) 4/(2*xs+1); s/(s72+0.1*s+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain
ans =
10.3577
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Singular Values
10

System: G
10" |- Frequency (radisec): 0.0106
Singular Value (abs): 5.26

7
2
S System: G
e Frequency (rad/sec): 0.0106
S Singular Value (abs): 1.14
=
S om
g
3
E)
£
(2}
10"
10'Z L L L
10 10" 10° 10" 10°

Frequency (rad/sec)

Figure : The singular values of the tranfer function matrix (prev slide).
Note that G(0)=[2,4 ; 0 3] which corresponds to M in the
SVD-example above. |G|l = 10.3577.
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The Small Gain Theorem

ry €1

€2 ra

52<—@‘—

Assume that $; and Sy are input-output stable. If
|S1]] - [1S2]l < 1, then the gain from (rq,r3) to (e1, e) in the
closed loop system is finite.
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Define [lyllz = \/fy |¥(@)I?dz. Then Sz < ISII- [yl

e1 =11+ Sa(re + S1(e1))

lesllr < lirallz + 1521 (2l + 15111 - leallr )

lr1llz + [|S2]l - [|rell7
1— ISl - [|Sell

lleallr <

This shows bounded gain from (r1,r2) to e;.

The gain to ey is bounded in the same way.

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 2



Application to robustness analysis

v w

T A(ia))
G(iw)

—C(iw)

The diagram can be redrawn as

1%

y &

GC
1+GC
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Application to robustness analysis

GC |
1+GC |

The small gain theorem guarantees stability if

GC

lalle- | - F g

H <1
)
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