Lecture 11: More on LQG

@ Example: Lab servo revisited
@ Connections to loop shaping
@ Example: LQG design for DC-servo

The purpose of this lecture is not to introduce new results, but
to explain the use of previous theory. The DC-servo example is
from section 10.2 in Glad/Ljung.
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Recall the main result of LQG

Given white noise (v1,ve) with intensity R and the linear plant
%(¢) = Ax(¢) + Bu(t) + Nvy(k) R [Rl ng]
y(t) = Cx(¢) + va(?) R, Ry
consider controllers of the form u = —Lx with

4% = Ax + Bu + K[y — Cx]. The stationary variance

E (xTle + 227 Qrou + uTQ2u)

is minimized when
K =(PCT + NRi»))R;' L =@Q;'(SB + Q)"
0=@Q; +ATS +SA— (SB + Q12)Q5'(SB + @12)"
0=NR,NT + AP + PAT — (PCT + NR15)R;1(PCT + NRy5)T
The minimal variance is

tr(SNRiNT) + tr[PLT(BTSB + @,)L]
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Example: Flexible servo

Y1 Y2

F mi —\/\/X\/\— my

d; ds
Syl ¥ el

d?y; dy:
1@ = —dla_k(yl—yﬂ‘i‘F(t)
d2ys dyo
mZW = —dZE + k(y1 — y2)
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Choice of minimization criterion

How choose @1, @2, @12 in the cost function

xTle + 2xTQ12u + uTqu

Rules of thumb:

@ Put @12 = 0 and make @1, Q2 diagonal

@ Make the diagonal elements equal to the inverse value of
the square of the allowed deviation:

()T Q1x(t) + u(?)T Qau(2)

(29) 1 (SO) 4 (B s (20
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Velocity error or position error?

Minimize E[xz(k)% + x4(k)% + u(k)?] or Elxi(k)? + x3(k)? + u(k)?] ?
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When only velocity is penalized, a static position error remains
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Position error control

Response of x1(k), x3(k),u(k) = —Lx(k) on impulse
disturbance in F. @, = diag{p,0, p,0} (p =0, 1, 10, 100),
®R12 =0, @5 = 1. Large p = fast response but large control
signal.
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Position+velocity error control

To reduce oscillations, penalize also velocity error. Comparision
between @; = diag{100,0,100,0} and
®: = diag{100, 100,100,100}
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Real and estimated states

Position x; real and estimated Velocity x, real and estimated
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A Kalman filter estimates the states using measured positions.
Why is the transient error bigger in the right plots?
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Miniproblem

What happens if

@ we reduce R; by 100007
@ we increase the upper left corner of Ry by 100007
@ we increase the lower right corner of Ry by 100007
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Reduced R;

Position x; real and estimated Velocity xy real and estimated
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When the expected process perturbations are small, the
observer will be slower.
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Increased the upper left corner of R,
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Increased lower right corner of R,
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Recall the simple control loop

@ Reduce the effects of load disturbances
@ Control the effects of measurement noise
@ Reduce sensitivity to process variations
@ Make output follow command signals
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Don’t forget “The Gang of Four”!

Check all relevant transfer functions for robustness and signal
sizes. The input sensitivity |(I + CP)~!(iw)| is plotted below.
No large peaks, maximum=1.4.

Input sensitivity function
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Example — DC-servo

U1 22

: X 20 _ 21
C(S) s s(s+1) o

B S

With P(s) = 2%, the transfer matrix from (v1,vz) to (21, 29) is

= G+
p —PC
1+PC 1+PC
Ga(s) = [ 1 —C
1+PC 1+PC

As a first (preliminary) design, we choose C(s) to minimize
trace/ G (i0)Gy(iw)'dow

This minimizes E(|z1]2 + |22/2) when (v1,v2) is white noise.
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Example — DC-motor

A B N
—N— ~= ~ =
x1_00x1+20u+20v
&g |1 —=1] |xg 0 0| 1!
Y = X2 + Ug 21 = X2 29 =U+ U1

Minimization of E(|z1|? + |22|2) is the LQG problem defined by

o o N [Ry 0] 10
Ql_[o 1] Q=1 R_[o RZ]_[O 1]

Solving the Riccati equations gives the optimal controller

0 ~ - A
%xz(A—BL)x+K[y—Cx] w=—Lx
where
20.0000
L =[0.2702 0.7298] K= [5.4031}
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Bode magnitude plots after optimization
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Bode magnitude plots after optimization
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Nonzero static gain in 1775 indicates poor disturbance rejection
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Example — DC-motor

To remove static errors in the output we penalize also zs:

U1 22

20
> C(S) o7 5(s+1) .

—1 |= -

The transfer matrix from (v1,v2) to (21, 22,23) is

23

P -PC
1+PC 1+PC

_ 1 —C

G (s) = 1+PC 1+PC
P -PC

s(1+PC) s(1+PC)
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Extended DC-motor model

With the model
=
U1
U2

e e —~N m——
X1 0 0 O0f [ 20 20 0
X9 = |1 =1 O] |xg| + |0 |u+]0 O
g 0 1 0| |xs 0 0 1

y = %2+ Vg

Ae Be Ne

minimization of |xz|? + |x3|2 + |u|? gives the optimal controller

d . = ot =
axe = (Ae N BeLe)xe + Ke [y — Cexe] u = —Lx

where

Le = [0.3162 1.0000 1.0000] 5.4031

Ce = [0.0000 1.0000 0.0000] 7z 20.0000
o =
1.0000

Automatic Control LTH, HT2013 FRTN10 Multivariable Control, Lecture 11



Bode magnitude plots after optimization
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Summary of LQG

Advantages

@ Works fine with multi-variable models

@ Observer structure ties to reality

@ Always stabilizing

@ Guaranteed robustness in state feeback case
@ Well developed theory

Disadvantages

@ High order controllers
@ Sometimes hard to choose weights
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Alternative norms for optimization

controlled variables z distubances v
1 l————
Plant
measurements y control inputs u
» Controller

LQG optimal control:

Minimize / G (l0)Gy (o) do

H , optimal control:

Minimize max |G, (io)]
w
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Linear Quadratic Game Problems

Notice that max, |G (iw)|| <y if and only if
|o* — y*v|* < 0

for all solutions to the system equations.

The H.,, optimal control problem with |z|2 = T @1x + u” Qsu
can be restated in terms of linear quadratic games of the form

min max(x” Q1% + u? Qau — y%|v|?)
u v

These can be solved using Riccati equations, just like LQG.
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