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Lecture 8: Multivariable and Decentralized Control

Transfer functions for MIMO-systems

vehicles

power network

process control industry

Limitations due to unstable multivariable zeros

Decentralized/decoupled control by pairing of signals

Short warning on integral action in parallel systems

See “Lecture notes” and [G&L, Ch. 1 and 8.1–8.3]
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Typical Process Control System
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Example MIMO-system: A Distillation Column

Example: Distillation column: raw oil inserted at bottom →
different petro-chemical subcomponents extracted

[
Y1(s)
Y2(s)

]

=







4

50s+ 1 e
−27s 1.8

60s+ 1 e
−28s 5.9

50s+ 1 e
−27s

5.4

50s+ 1 e
−18s 5.7

60s+ 1 e
−14s 6.9

40s+ 1 e
−15s







︸ ︷︷ ︸

P(s)





U1(s)
U2(s)
U3(s)





Outputs: Inputs:

y1 = top draw composition u1 = top draw flowrate

y2 = side draw composition u2 = side draw flowrate

u3 = bottom temperature control input
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Multivariable transfer functions

F C P

−1

ΣΣΣ
r e u

d

z

n

y

Order matters!!

Z(s) = PCF ⋅ R(s) + P ⋅ D(s) − PC ⋅ [N(s) + Z(s)]
[I + PC]Z(s) = PCF ⋅ R(s) + P ⋅ D(s) − PC ⋅ N(s)

Z(s) = [I + PC]−1 ⋅ (PCF ⋅ R(s) + P ⋅ D(s) − PC ⋅ N(s))

Notice that [I + PC]−1 is generally not the same as [I + CP]−1.
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Sensitivity functions for MIMO-systems

Output sensitivity function

S = (I + PC)−1

Input sensitivity function

(I + CP)−1

Complementary sensitivity function

T = (I + PC)−1PC

G?→?

G?→?

G?→?

1-minute problem:

Find the transfer functions above in the block diagram on

the previous slide. (Extra: What are the dimensions?)
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Some useful math relations

Notice the following identities:

(i) [I + PC]−1P = P[I + CP]−1

(ii) C[I + PC]−1 = [I + CP]−1C

(iii) T = P[I + CP]−1C = PC[I + PC]−1 = [I + PC]−1PC
(iv) S+ T = I

Proof:

The first equality follows by multiplication on both sides with

(I + PC) from the left and with (I + CP) from the right.

Left: [I + PC][I + PC]−1P[I + CP] = I ⋅ [P+ PCP] = [I + PC]P
Right: [I + PC]P[I + CP]−1[I + CP] = [I + PC]P ⋅ I = [I + PC]P

–“Push through and keep track of order”

Automatic Control LTH, HT2010 FRTN10 Multivariable Control, Lecture 8



Some useful math relations

Notice the following identities:

(i) [I + PC]−1P = P[I + CP]−1

(ii) C[I + PC]−1 = [I + CP]−1C

(iii) T = P[I + CP]−1C = PC[I + PC]−1 = [I + PC]−1PC
(iv) S+ T = I

Proof:

The first equality follows by multiplication on both sides with

(I + PC) from the left and with (I + CP) from the right.

Left: [I + PC][I + PC]−1P[I + CP] = I ⋅ [P+ PCP] = [I + PC]P
Right: [I + PC]P[I + CP]−1[I + CP] = [I + PC]P ⋅ I = [I + PC]P

–“Push through and keep track of order”

Automatic Control LTH, HT2010 FRTN10 Multivariable Control, Lecture 8



Lecture 8: Multivariable and Decentralized Control

Transfer functions for MIMO-systems

Limitations due to unstable multivariable zeros

Decentralized/decoupled control by pairing of signals

Short warning on integral action in parallel systems
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Hard limitations from unstable zeros

If the plant has an unstable zero zu, then the specification

∥
∥
∥[I + P(iω )C(iω )]−1

∥
∥
∥ <

√
2

√

1+ z2u/ω 2
for all ω

is impossible to satisfy.

10
-2

10
-1

10
0

10
1

zu
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Hard limitations from unstable poles

If the plant has an unstable pole pu, then the specification

∥
∥
∥P(iω )C(iω )[I + P(iω )C(iω )]−1

∥
∥
∥ <

√
2pu

√

ω 2 + p2u
for all ω

is impossible to satisfy.

10
-2

10
-1

10
0

10
1

pu
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Non-minimum phase MIMO System

Example [G&L, Ch 1]

Consider a feedback system Y(s) = (I + PC)−1 ⋅ R(s) with the

multivariable process

P(s) =
[
2
s+1

3
s+2

1
s+1

1
s+1

]

Computing the determinant

det P(s) = 2

(s+ 1)2 −
3

(s+ 2)(s+ 1) =
−s+ 1

(s+ 1)2(s+ 2)

shows that the process has an unstable zero at s = 1, which

will limit the achievable performance.

See lecture notes for details of the following slides (checking

three different controllers)
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Example — controller 1

The controller

C1(s) =
[
K1(s+1)
s

−3K2(s+0.5)
s(s+2)

− K1(s+1)
s

2K2(s+0.5)
s(s+1)

]

gives the diagonal loop transfer matrix

P(s)C1(s) =
[
K1(−s+1)
s(s+2) 0

0
K2(s+0.5)(−s+1)
s(s+1)(s+2)

]

Hence the system is decoupled into to scalar loops, each with

an unstable zero at s = 1 that limits the bandwidth.

The closed loop step responses are shown in Figure 1.
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Step responses using controller 1

Step Response
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Figure : Closed loop step responses with decoupling controller C1(s)
for the two outputs y1 (solid) and y2 (dashed). The upper plot is for a

reference step for y1. The lower plot is for a reference step for y2.
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Example – controller 2

The controller

C2(s) =
[
K1(s+1)
s

K2

− K1(s+1)
s

K2

]

gives the diagonal loop transfer matrix

P(s)C2(s) =
[
K1(−s+1)
s(s+2)

K2(5s+7)
(s+2)(s+1)

0
2K2
s+1

]

Now the decoupling is only partial:

Output y2 is not affected by r1. Moreover, there is no unstable

zero that limits the rate of response in y2!

The closed loop step responses for K1 = 1, K2 = 10 are shown

in Figure 2.
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Step responses using controller 2
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Figure : Closed loop step responses with controller C2(s) for the two

outputs y1 (solid) and y2 (dashed). The right half plane zero does not

prevent a fast y2-response to r2 but at the price of a simultaneous

undesired response in y1.

Automatic Control LTH, HT2010 FRTN10 Multivariable Control, Lecture 8



Example – controller 3

The controller

C3(s) =
[

K1
−K2(s+0.5)
s(s+2)

K1
2K2(s+0.5)
s(s+1)

]

gives the diagonal loop transfer matrix

P(s)C3(s) =
[
K1(5s+7)
(s+1)(s+2) 0

2K1
s+1

K2(−1+s)(s+0.5)
s(s+1)2(s+2)

]

In this case y1 is decoupled from r2 and can respond arbitrarily

fast for high values of K1, at the expense of bad behavior in y2.

Step responses for K1 = 10, K2 = −1 are shown in Figure 3.
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Step responses using controller 3

Step Response

Time (sec)

A
m

pl
itu

de

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

Step Response

Time (sec)

A
m

pl
itu

de

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

Figure : Closed loop step responses with controller C3(s) for the two

outputs y1 (solid) and y2 (dashed). The right half plane zero does not

prevent a fast y1-response to r1 but at the price of a simultaneous

undesired response in y2.
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Example — summary

To summarize, the example shows that even though a

multivariable unstable zero always gives a performance

limitation, it is possible to influence where the effects should

show up.
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Lecture 8: Multivariable and Decentralized Control

Transfer functions for MIMO-systems

Limitations due to unstable multivariable zeros

Decentralized/decoupled control by pairing of signals

Short warning on integral action in parallel systems
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Interaction of Simple Loops

replacements

ysp1

ysp2

u1

u2

y1

y2

C1

C2

Process

Y1(s) = p11(s)U1(s) + p12U2(s)
Y2(s) = p21(s)U1(s) + p22U2(s),

What happens when the controllers are tuned individually?
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Rosenbrock’s Example

There is a nice collection of linear multivariable systems with

interesting properties. Here is one of them

P(s) =





1

s+ 1
2

s+ 3
1

s+ 1
1

s+ 1





Very benign subsystems (compare with example in [G&L, Ch.1]).

The transmission zeros are given by

det P(s) = 1

s+ 1
( 1

s+ 1 −
2

s+ 3
)

= 1− s
(s+ 1)2(s+ 3) = 0.

Difficult to control the system with gain crossover frequencies

larger than ω�c = 0.5.
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An Example

Controller C1 is a PI controller with gains k1 = 1, ki = 1, and the

C2 is a proportional controller with gains k2 = 0, 0.8, and 1.6.

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

5

10

y 1
u
1

The second controller has a major impact on the first loop!
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RGA / Bristol’s Relative Gain

A simple way of measuring interaction based on static

properties

Edgar H. Bristol, "On a new measure of interaction for

multivariable process control", [IEEE TAC 11(1967) pp. 133–135]

Idea: What is effect of control of one loop on the steady

state gain of another loop?

Consider one loop when the other loop is under perfect

control

Y1(s) = p11(s)U1(s) + p12U2(s)
0 = p21(s)U1(s) + p22U2(s).
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RGA / Bristol’s Relative Gain

Consider the first loop u1 → y1 when the second loop is in

perfect control (y2 = 0)

Y1(s) = p11(s)U1(s) + p12U2(s)
0 = p21(s)U1(s) + p22U2(s).

Eliminating U2(s) from the first equation gives

Y1(s) =
p11(s)p22(s) − p12(s)p21(s)

p22(s)
U1(s).

The ratio of the static gains of loop 1 when the second loop is

open and closed is

λ = p11(0)p22(0)
p11(0)p22(0) − p12(0)p21(0)

.

Parameter λ is called Bristol’s interaction index
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Many Loops

Assume n inputs and n outputs. Pick an input output pair and

relabel so that the output is y1, let the remaining outputs be

y2 = 0. Let the input be u2 and the remaining inputs be u1.

y1 = p11u1 + p12u2
0 = p21u1 + p22u2

Solving for y1 gives

y1 = (p12 − p11p−121 p22)u2, λ12 =
p12

(p12 − p11p−121 p22)−1

Compare

P =



p11 p12
p21 p22



 , P−1 =



⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(p12 − p11p−121 p22)−1 ⋅ ⋅ ⋅





The relative gain array is Λ = P. ⋆ P−T
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Bristol’s Relative Gain Array (RGA)

Let P(s) be an n$ n matrix of transfer functions. The relative

gain array is

Λ = P(0). ⋆ P−T(0)
The product .⋆ is “element-by-element product” (Schur or

Hadamard product, same notation in matlab). Properties

(A. ⋆ B)T = AT . ⋆ BT
P diagonal or triangular gives Λ = I
Not effected by diagonal scalings

Insight and use

A measure of static interactions for square systems which

tells how the gain in one loop is influenced by perfect

feedback on all other loops

Dimension free. Row and column sums are 1.

Negative elements correspond to sign reversals due to

feedback of other loops
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Pairing

When designing complex systems loop by loop we must decide

what measurements should be used as inputs for each

controller. This is called the pairing problem. The choice can be

governed by physics but the relative gain can also be used

Consider the previous example

P(0) =



1 2

1 1



 , P−1(0) =



−1 2

1 −1





Λ = P(0). ⋆ P−T(0) =



−1 2

2 −1



 ,

Negative sign indicates the sign reversal found previously

Better to use reverse pairing, i.e. let u2 control y1
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Step Responses with Reverse Pairing

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

y 1
u
2

U2 =
(

1+ 1
s

)

(Yref1 − Y1)
u1 = −k2y2 with k2 = 0, 0.8, and 1.6.
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Summary for 2$ 2 Systems (RGA)

λ = 1 No interaction

λ = 0 Closed loop gain u1 → y1 is zero. Avoid this.

0 < λ < 1 Closed loop gain u1 → y1 is larger than open

loop gain.

λ > 1 Closed loop gain u1 → y1 is smaller than open loop

gain. Interaction increases with increasing λ . Very difficult

to control both loops independently if λ is very large.

λ < 0 The closed loop gain u1 → y1 has different sign than

the open loop gain. Opening or closing the second loop

has dramatic effects. The loops are counteracting each

other. Such pairings should be avoided for decentralized

control and the loops should be controlled jointly as a

multivariable system.
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Interactions Can be Beneficial

P(s) =



p11(s) p12(s)
p21(s) p22(s)



 =





s− 1
(s+ 1)(s+ 2)

s

(s+ 1)(s+ 2)
−6

(s+ 1)(s+ 2)
s− 2

(s+ 1)(s+ 2)





.

The relative gain array

R =



1 0

0 1



 ,

Transmission zeros

det P(s) = (s− 1)(s− 2) + 6s(s+ 1)2(s+ 2)2 = s2 + 4s+ 2
(s+ 1)2(s+ 2)2

Difficult to control individual loops fast because of the zero at

s = 1. Since there are no multivariable zeros in the RHP the

multivariable system can easily be controlled fast but this

system is not robust to loop breaks.
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The Quadruple Tank

u1 u2

y1 y2

y3 y4

γ 1

1− γ 1

γ 2

1− γ 2

Tank 1

(A2)

Tank 2

(B2)

Tank 3

(A1)

Tank 4

(B1)

Pump 1 (BP) Pump 2 (AP)
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Transfer Function of Linearized Model

Transfer function from u1,u2 to y1, y2

P(s) =





γ 1c1
1+ sT1

(1− γ 2)c1
(1+ sT1)(1+ sT3)

(1− γ 1)c2
(1+ sT2)(1+ sT4)

γ 2c2
1+ sT2





Transmission zeros

det P(s) =
(1+ sT3)(1+ sT4) −

(1− γ 1)(1− γ 2)
γ 1γ 2

(1+ sT1)(1+ sT2)(1+ sT3)(1+ sT4)

No interaction of γ 1 = γ 2 = 1
Minimum phase if 1 ≤ γ 1 + γ 2 ≤ 2
Nonminimum phase if 0 < γ 1 + γ 2 ≤ 1.
Intuition?
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Relative Gain Array

Zero frequency gain matrix

P(0) =



γ 1c1 (1− γ 2)c1

(1− γ 1)c2 γ 2c2





The relative gain array

RGA(P(0)) =



λ 1− λ

1− λ λ





where

λ = γ 1γ 2
γ 1 + γ 2 − 1

No interaction for γ 1 = γ 2 = 1
Severe interaction if γ 1 + γ 2 < 1
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A multivariable control problem

-The water is -Now it is too hot! -Now it is too cold! -Now it is too deep!

too cold!

How to do if we want to separate control of

temperature?

water level?

LC

L
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Decoupling

Simple idea: Find a compensator so that the system appears to

be without coupling ("block-diagonal transfer function matrix").

Many versions – here we will consider

Input decoupling Q = PD1
Output decoupling Q = D2P
“both” Q = D2PD1

but many different methods including

Conventional (Feedforward)

Inverse (Feedback)

Static

Important to consider windup, manual control and mode

switches.

Keep the decentralized philosophy
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yuv

w

PC D1

D2

Find D1 and D2 so that the controller sees a “diagonal plant”:

D2PD1 =





∗ 0 0

0 ∗ 0

0 0 ∗





Then we can use a "decentralized" controller C with same

block-diagonal structure.
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Decoupling —- Flight Control

Longitudinal

Lateral

May be good to decouple interaction to outputs, but you should

also be careful not to waste control action to “strange

decouplings”!!
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Lecture 8: Multivariable and Decentralized Control

Transfer functions for MIMO-systems

Limitations due to unstable multivariable zeros

Decentralized/decoupled control by pairing of signals

Short warning on integral action in parallel systems
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Systems with Parallel Actuation

ω

  
wsp

    A1

    A2    C2

    C1

Gearbox

Motor drives for papermachines and rolling mills

Trains with several motors or several coupled trains

Power systems
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A Prototype Example

J
dω

dt
+Dω = M1+M2−ML,

Proportional control

M1 = M10 + K1(ω sp −ω )
M2 = M20 + K2(ω sp −ω )

ω

  
wsp

    A1

    A2    C2

    C1

Gearbox

The proportional gains tell how the load is distributed

J
dω

dt
+ (D + K1 + K2)ω = M10 + M20 − ML + (K1 + K2)ω sp.

A first order system with time constant T = J/(D + K1 + K2)
Discuss response speed, damping and steady state

ω = ω 0 =
K1 + K2

D + K1 + K2
ω sp +

M10 + M20 − ML
D + K1 + K2

.
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Integral Action?

What if we instead use

two PI-controllers?

WARNING!!!

ω

  
wsp

    A1

    A2    C2

    C1

Gearbox

Prototypes for lack of controllability and observability!
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Power Systems - Massive Parallellism

Edison’s experience

Two generators with

governors having

integral action

Many generators supply
power to the net.

Frequency control

Voltage control

Isochronous governors

(integral action) and

governors with

speed-drop (no integral

action)
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Summary

All real systems are coupled

Multivariable zeros - limitations

Never forget process redesign

Relative gain array and singular values give insight

Why decouple

Simple system.

SISO design, tuning and operation can be used

What is lost?

Parallel systems

One integrator only!

Next lecture: Multivariable design LQ/LQG
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