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Lecture 6

Controllability and observability

Multivariable zeros

Realizations on diagonal form

Examples: Ball in a hoop

Multiple tanks
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Example: Ball in the Hoop

input ω

output θ

θ̈ + cθ̇ + kθ = ω̇

Can you reach θ = π /4, θ̇ = 0? Can you stay there?
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Example: Two water tanks

u1u1

u2 u2x1

x1

x2

ax2 a > 1

ẋ1 = −x1 + u1 y1 = x1 + u2

ẋ2 = −ax2 + u1 y2 = ax2 + u2

Can you reach y1 = 1, y2 = 2? Can you stay there?
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Controllability

The system

ẋ(t) = Ax(t) + Bu(t)

is controllable , if for every x1 ∈ R
n there exists u(t), t ∈ [0, t1],

such that x(t1) = x1 is reached from x(0) = 0.

The collection of vectors x1 that can be reached in this way is

called the controllable subspace.
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Controllability criteria

The following statements regarding a system

ẋ(t) = Ax(t) + Bu(t) of order n are equivalent:

(i) The system is controllable

(ii) rank [A− λ I B] = n for all λ ∈ C

(iii) rank [B AB . . . An−1B] = n

If A is exponentially stable, define the controllability Gramian

S =

∫ ∞

0

eAtBBT eA
T tdt

For such systems there is a fourth equivalent statement:

(iv) The controllability Gramian is non-singular
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Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is in a

stable system to reach a certain state.

In fact, let S1 =
∫ t1
0
eAtBBT eA

T tdt. Then, for the system

ẋ(t) = Ax(t) + Bu(t) to reach x(t1) = x1 from x(0) = 0 it is

necessary that

∫ t1

0

pu(t)p2dt ≥ xT1 S
−1
1 x1

Equality is attained with

u(t) = BT eA
T (t1−t)S−11 x1
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Proof

0 ≤

∫ t1

0

[xT1 S
−1
1 e

A(t1−t)B − u(t)T ][BT eA
T (t1−t)S−11 x1 − u(t)]dt

= xT1 S
−1
1

∫ t1

0

eAtBBT eA
T tdt S−11 x1

− 2xT1 S
−1
1

∫ t1

0

eA(t1−t)Bu(t)dt+

∫ t1

0

pu(t)p2dt

= −xT1 S
−1
1 x1 +

∫ t1

0

pu(t)p2dt

so
∫ t1
0
pu(t)p2dt ≥ xT1 S

−1
1 x1 with equality attained for

u(t) = BT eA
T (t1−t)S−11 x1. This completes the proof.
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Computing the controllability Gramian

The controllability Gramian S =
∫∞
0
eAtBBT eA

T tdt can be

computed by solving the linear system of equations

AS + SAT + BBT = 0

Proof. A change of variables gives

∫ ∞

h

eAtBBT eA
T tdt =

∫ ∞

0

eA(t−h)BBT eA
T (t−h)dt

Differentiating both sides with respect to h and inserting h = 0
gives

−BBT = AS + SAT
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Example: Two water tanks

u1u1

u2 u2x1

x1

x2

ax2

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

The controllability Gramian S =

∫ ∞

0

[
e−t

e−at

] [
e−t

e−at

]T

dt =

[
1
2

1
a+1

1
a+1

1
2a

]

is close to singular when a ( 1. Interpretation?
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Example cont’d

In matlab you can solve the Lyapunov equation AS+ SAT + BBT = 0 by lyap

>> a=1.25 ; A=[-1 0 ; 0 -1*a ]; B=[1 ; 1] ;

>> Cs= [B A*B] , rank(Cs)

Cs =

1.0000 -1.0000

1.0000 -1.2500

ans =

2

>> S=lyap(A,B*B’)

S =

0.5000 0.4444

0.4444 0.4000

>> invS=inv(S)

invS =

162.0 -180.0

-180.0 202.5
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Plot of
[

x1 x2
]

⋅ S−1
[

x1
x2

]

= 1

corresponds to the states we can reach by
∫∞

0
pu(t)p2dt = 1.
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Observability

The system

ẋ(t) = Ax(t)

y(t) = Cx(t)

is observable , if the initial state x(0) = x0 ∈ R
n is uniquely

determined by the output y(t), t ∈ [0, t1].

The collection of vectors x0 that cannot be distinguished from

x = 0 is called the unobservable subspace.

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 6



Observability criteria

The following statements regarding a system ẋ(t) = Ax(t),
y(t) = Cx(t) of order n are equivalent:

(i) The system is observable

(ii) rank

[
A− λ I

C

]

= n for all λ ∈ C

(iii) rank








C

CA
...

CAn−1







= n

If A is exponentially stable, define the observability Gramian

O =

∫ ∞

0

eA
T tCTCeAtdt

For such systems there is a fourth equivalent statement:

(iv) The observability Gramian is non-singular
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Interpretation of the observability Gramian

The observability Gramian measures how difficult it is in a

stable system to distinguish two initial states from each other by

observing the output.

In fact, let O1 =
∫ t1
0
eA
T tCTCeAtdt. Then, for ẋ(t) = Ax(t), the

influence from the initial state x(0) = x0 on the output

y(t) = Cx(t) satisfies

∫ t1

0

py(t)p2dt = xT0 O1x0
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Computing the observability Gramian

The observability Gramian O =
∫∞
0
eA
T tCTCeAtdt can be

computed by solving the linear system of equations

ATO + OA+ CTC = 0

Proof. The result follows directly from the corresponding

formula for the controllability Gramian.
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Poles and zeros

Y(s) = [C(sI − A)−1B + D]
︸ ︷︷ ︸

G(s)

U(s)

The points p ∈ C where G(s) = ∞ are called poles of G. They

are eigenvalues of A and determine stability.

The poles of G(s)−1 are called zeros of G.
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Poles determine stability

All poles of G(s) = C(sI − A)−1B + D are eigenvalues of A.

The matrix A can always be written on the form

A = U






λ1 ∗

. . .

0 λn




U

−1. Hence eAt = U






eλ1t ∗

. . .

0 eλnt




U

−1.

The diagonal elements are the eigenvalues of A.

eAt decays exponentially if and only if Re{λ k} < 0 for all k.
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Interpretation of poles and zeros

Poles:

A pole s = a is associated with a time function x(t) = x0e
at

A pole s = a is an eigenvalue of A

Zeros:

A zero s = a means that an input u(t) = u0e
at is blocked

A zero describes how inputs and outputs couple to states
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Pole polynomial and Zero polynomial

The following definitions can be used even when G(s) is not a

square matrix:

The pole polynomial is the least common denominator of

all minors (sub-determinants) to G(s).

The zero polynomial is the greatest common divisor of the

maximal minors of G(s).

When G(s) is square, the only maximal minor is detG(s), so

the zeros are determined from the equation

detG(s) = 0

Actually s = z is a zero when the matrix M(s) looses rank

M(s) =

[
sI − A B

−C D

]
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Example: Ball in the Hoop

input ω

output θ

θ̈ + cθ̇ + kθ = ω̇

The transfer function from ω to θ is s
s2+cs+k

. The zero in s = 0
makes it impossible to control the stationary position of the ball.
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Example: Two water tanks

replacements u1u1

u2 u2x1

x1
x2

2x2
ẋ1 = −x1 + u1 y1 = x1 + u2

ẋ2 = −2x2 + u1 y2 = 2x2 + u2

G(s) =

[
1
s+1 1
2
s+2 1

]

detG(s) =
−s

(s+ 1)(s+ 2)

The system has a zero in the origin! At stationarity y1 = y2.
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Plot Singular Values of G(s) Versus Frequency

» s=tf(’s’)
» G=[1/(s+1) 1 ; 2/(s+2) 1]

» sigma(G) ; plot singular values

% ALT. for a certain frequency:

» i=sqrt(-1)

» w=1;

» A=[1/(i*w+1) 1 ; 2/(i*w+2) 1]
» [U,S,V] = svd(A) 10
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The largest singular value of G(iω ) =

[
1
iω+1 1
2
iω+2 1

]

is fairly

constant. This is due to the second input. The first input makes

it possible to control the difference between the two tanks, but

mainly near ω = 1 where the dynamics make a difference.
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Singular values - continued

Revisit example from lecture notes 2:

The largest singularvalue of a matrix A, σ (A) = σmax(A) is the

square root of the largest eigenvalue of the matrix A∗A,

σ (A) =
√

λmax(A∗A)

Q: For frequency specifications (see prev lectures); When are

we interested in the largest amplification and when are we

interested in the smallest amplification?
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Realization on diagonal form

Consider a transfer matrix with partial fraction expansion

G(s) =

n∑

i=1

CiBi

s− pi
+ D

This has the realization

ẋ(t) =






p1 I 0

. . .

0 pn I




 x(t) +






B1
...

Bn




u(t)

y(t) =
[
C1 . . . Cn

]
x(t) + Du(t)

The rank of the matrix CiBi determines the necessary number

of columns in Bi and the multiplicity of the pole pi.
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Example: Realization of Multi-variable system

To find state space realization for the system

G(s) =

[
1
s+1

2
(s+1)(s+3)

6
(s+2)(s+4)

1
s+2

]

write the transfer matrix as

[
1
s+1

1
s+1 −

1
s+3

3
s+2 −

3
s+4

1
s+2

]

=

[
1

0

]
[
1 1

]

s+ 1
+

[
0

1

]
[
3 1

]

s+ 2
−

[
1

0

]
[
0 1

]

s+ 3
−

[
0

1

]
[
3 0

]

s+ 4

This gives the realization






ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)






=







−1 0 0 0

0 −2 0 0

0 0 −3 0

0 0 0 −4













x1(t)
x2(t)
x3(t)
x4(t)






+







1 1

3 1

0 −1
−3 0







[
u1(t)
u2(t)

]

[
y1(t)
y2(t)

]

=

[
1 0 1 0

0 1 0 1

]

x(t)
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