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Lecture 3: Specifications and Disturbance Models

Continuing from lecture 2...

Look at all transfer functions the closed-loop system!

(Gang of Four / Gang of six)

Scalings

New today

Stochastic disturbances

From transfer function to output spectrum

From output spectrum to transfer function

[Glad & Ljung] Ch. 5.1–5.6, 6.1–6.3
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A Basic Control System
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Ingredients:

Controller: feedback C, feedforward F

Load disturbance d: Drives the system from desired state

Measurement noise n: Corrupts information about x

Process variable x should follow reference r
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Specifications

Find a controller that

A: Reduces effects of load disturbances

B: Does not inject too much measurement noise into the

system

C: Makes the closed loop insensitive to variations in the

process

D: Makes output follow command signals

Convenient to use a controller with two degrees of freedom, i.e.

separate signal transmission from y to u and from r to u. This

gives a complete separation of the problem: Use feedback to

deal with A, B, and C. Use feedforward to deal with D!
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System with Two Degrees of Freedom
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The controller has two degrees of freedom (2DOF) because the

transfer function from reference r to control u is different from

the transfer function from y to u.

We have already encountered this in e.g., PID control

u(t) = k(br(t) − y(t)) +
∫ t

0

(r(τ ) − y(τ ))dτ + d
dt
{0 ⋅ r − y}
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Designing System with Two Degrees of Freedom

Design procedure:

Design the feedback C to achieve

Small sensitivity to load disturbances d
Low injection of measurement noise n

High robustness to process variations

Then design the feedforward F to achieve desired

response to command signals r

For many problems in process control the load disturbance

response is much more important than the set point response.

The set point response is more important in motion control.

Few textbooks and papers show more than set point responses.
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Many Versions of 2DOF
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For linear systems all 2DOF configurations have the same

properties. For the systems above we have

CF = Mu + CMy
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3. Relations between signals
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X = P

1+ PCD −
PC

1+ PCN +
PCF

1+ PCR

Y = P

1+ PCD +
1

1+ PCN +
PCF

1+ PCR

U = − PC

1+ PC D −
C

1+ PCN +
CF

1+ PCR
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Some Observations

A system based on error feedback is characterized by four

transfer functions (The Gang of Four)

The system with a controller having two degrees of

freedom is characterized by six transfer function (The

Gang of Six)

To fully understand a system it is necessary to look at all

transfer functions

It may be strongly misleading to only show properties of a

few systems for example the response of the output to

command signals. This is a common error in the literature.

The properties of the different transfer functions can be

illustrated by their transient or frequency responses.
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A Possible Choice

Six transfer functions are required to show the properties of a

basic feedback loop. Four characterize the response to load

disturbances and measurement noise.

PC

1+ PC
P

1+ PC
C

1+ PC
1

1+ PC

Two more are required to describe the response to set point

changes.
PCF

I + PC
CF

1+ PC

Automatic Control LTH, 2012 FRTN10 Multivariable Control, Lecture 3



Amplitude Curves of Frequency Responses

PI control k = 0.775, Ti = 2.05 of P(s) = (s+ 1)−4 with

M(s) = (0.5s+ 1)−4
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Step Responses

PI control k = 0.775, Ti = 2.05 of P(s) = (s+ 1)−4 with

M(s) = (0.5s+ 1)−4
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An Alternative

Show the responses in the output and the control signal to a

step change in the reference signal for system with pure error

feedback and with feedforward. Keep the reference signal

constant and make a unit step in the process input.

(Upper:) Output response (Lower:) Control signal.
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A Warning!

Please remember to always look at all responses when you are

dealing with control systems. The step response below looks

fine but ...

0 1 2 3 4 5
0

0.5

1

Response of y to step in r
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Four Responses
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Response of u to step in r Response of u to step in d

What is going on?
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The System

Process P(s) = 1

s− 1

Controller C(s) = s− 1
s

Response of y to reference r

Y(s)
R(s) =

PC

1+ PC =
1

s+ 1

Response of y to step in disturbance d

Y(s)
D(s) =

P

1+ PC =
s

s2 − 1 =
s

(s+ 1)(s− 1)
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Scaling

Warning: The norms used to measure signal size can be very

misleading if we are using states with very different magnitudes!

Common to scale/normalize variables for state representations

xi = xpi /di

where

x
p
i corresponds to physical units

di corresponds to (expected) max size of variable

(absolute value).

Can also introduce weighted quadratic norms such as

pxp2P = xTPx

where P = PT > 0
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Scaling cont’d

[Skogestad]

Remark:

It is particularly important for the sensitivity function

S = (I + PC)−1of a MIMO system that outputs or output

errors are of the same magnitude for correct comparisons.

If operating around a set-point where the expected or

allowed variation is not symmetric (e.g. if only positive

values allowed) then it may be

better to introduce deviations and scale these instead.
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Disturbances cont.

u
G

wm ws

z

n

y

+
C

Load disturbances

disturbances which really affect the system
wm measurable — use e.g., in feedforward compensation

ws non-measurable — controller need to suppress these

Measurement disturbances n

Controller should not be "fooled" by measurement

disturbances

Common case: z = S(u,wm,ws), y= z+ n where

z is the control objective, y is the measured output
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Motivation

Example: Paper thickness — want to keep down variation in

output!

−2 0 2 4 6
0

0.5

D
is

tr
ib

u
ti
o

n Test limit

Paper thickness

All paper production below the test limit is wasted.

Good control allows for lower setpoint with the same waste.

The average thickness is lower, which saves significant costs.
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Motivation cont’d - LQG control

System with process noise w and measurement noise v.

Minimize

∫ (

xTQ1x + 2xTQ12u+ uTQ2u
)

dt

subject to ẋ = Ax + Bu+w
y = Cx + Du+ v

where v is white noise with intensity R1 and w is white noise

with intensity R2.

Can solve two separate problems thanks to

Separation principle:

Controller design for full state information

Optimal estimation of states

=[ Output feedback using observer
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State-feeadback

s

r
lr

u = lrr − Lx

−L

Plant
y

x

Observer feedback

s

r
lr

−L

Plant
y

Observer

u = lrr − Lx̂

x̂
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Linear Quadratic Control (LQ)

Find state-feedback gain L =
[
l1 l2 . . . ln

]
for the control

u = −Lx, being the solution to the optimization problem

Minimize

∫
(
xTQ1x + 2xTQ12u+ uTQ2u

)
dt

subject to ẋ = Ax + Bu
y= Cx + Du

Stochastic Linear Quadratic Control (LQG)
Based on information of the noise v and w find the optimal

observer/Kalman gain K and use control u = −Lx̂

Minimize

∫
(
xTQ1x + 2xTQ12u+ uTQ2u

)
dt

subject to ẋ = Ax + Bu +w
y= Cx + Du+ v

where v is white noise with intensity R1 and w is white noise with

intensity R2.

Automatic Control LTH, 2012 FRTN10 Multivariable Control, Lecture 3



A stochastic process (random process, random function) is a

family of stochastic variables {x(t), t ∈ T}
Index set T = {. . . ,−h, 0,h, . . .}, or h = 1
A function of two variables x(t,ω )
Fixed ω = ω 0 gives a time function x(⋅,ω 0) (realization)

Fixed t = t1 gives a random variable x(t1, ⋅)

A realization

t1 t

ξ

    F ξ , t 1( )

1

    x ⋅,ω1( )

x ⋅,ω2( )

    x ⋅,ω3( )

    x ⋅,ω4( )
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Zero mean stationary stochastic processes

The distribution is independent of t

Mean-value function

Ex(t) " 0
Covariance function

rxx(τ ) = Ex(t+ τ )x(t)T

Cross-covariance function

rxy(τ ) = Ex(t+ τ )y(t)T

A zero mean Gaussian process x is completely determined by

its covariance function.
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Spectral density

Fourier transform of the covariance function

φ xy(ω ) =
∫ ∞

−∞
rxy(t)e−itω

and

rxy(t) =
∫ ∞

−∞
eitωφ xy(ω ) dω

In particular

Ex(t)xT (t) = rxx(0) =
∫ ∞

−∞
φ xx(ω ) dω

White noise e with intensity R:

Φ e(ω ) = R for all frequencies ω
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Covariance, spectral density, and realization
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Error-correction: The spectra should be divided by 2π
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What is this spectrum?
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What is this spectrum? — Vuvuzela!
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Main Problems

1 Determine covariance function and spectral density of y

when white noise u is filtered through the linear system

ẋ = Ax + Bu(k)
y = Cx

2 Conversely, find filter parameters A, B and C to give y a

desired spectral density.
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Spectral density and transfer functions

G(s)u y

What is the output spectral density for y if the input u has

spectral density Φu(ω )?

Y(iω ) = G(iω )U(iω )
where Y = F {y}, U = F {u} are the Fourier transforms.

Φy(ω )=̂Φyy(ω ) = Y(iω )Y(iω )∗ = G(iω )U(iω )U(iω )∗G(iω )∗

Spectral density Φyy(ω ) = G(iω )Φuu(ω )G(iω )∗
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G(s)u y

In similar way we find

cross-spectral density Φyu(ω ) = G(iω )Φuu(ω )

"Everything" can be generated by filtering white noise.
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Linear system with white noise input

Consider the linear system

ẋ = Ax + Bv, Φv(ω ) = R

The transfer function from v to x is

G(s) = (sI − A)−1B

and the spectrum for x will be

Φx(ω ) = (iω I − A)−1BR B∗(−iω I − A)−T
︸ ︷︷ ︸

G(iω )∗
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ẋ = Ax + Bv, Φv(ω ) = R

Covariance matrix for state x:

Πx = Rx =
1

2π

∫ ∞

−∞
Φx(ω )dω

Alternative way of calculating Πx

Theorem [G&L 5.3]

If all eigenvalues of A are strictly in the left half plane (i.e.

Re{λ k} < 0) then there exists a unique matrix Πx = ΠTx > 0
which is the solution to the matrix equation

AΠx + ΠxA
T + BRBT = 0
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Example: Consider the system

ẋ = Ax + Bv =
[
−1 2
−1 0

] [
x1
x2

]

+
[
1

0

]

v

where v is white noise with variance 1.

What is the covariance for x?

First check the eigenvalues of A : λ = −1
2
± i

√
7
2
∈ LHP. OK!

Solve the Lyapunov equation AΠx + ΠxA
T + BRBT = 02,2.
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Example cont’d

AΠx + ΠxA
T + BRBT = 02$2

Find Πx:

[
−1 2
−1 0

] [
Π11 Π12
Π12 Π22

]

+
[

Π11 Π12
Π12 Π22

] [
−1 −1
2 0

]

+
[
1

0

]
[
1 0

]
=

=
[
2(−Π11 + 2Π12) + 1 −Π12 + 2Π22 − Π11
−Π12 + 2Π22 − Π11 −2Π12

]

=
[
0 0

0 0

]

Solving for Π11, Π12 and Π22 gives

=[ Πx =
[

Π11 Π12
Π12 Π22

]

=
[
1/2 0

0 1/4

]

> 0

Matlab: lyap([-1 2; -1 0],[1 ; 0]*[1 0])
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Disturbance representations– Spectral factorization

Assume that the disturbance w has spectrum Φw(ω )
(Spectral factorization) Assume that we can find a transfer

function G(s) such that G(iω )RG(iω )∗ = Φw(ω ) for a

constant R.

In that case we can consider w as an output from the linear

system G with white noise as input, Φv(ω ) = R (equal energy

for all frequencies/flat spectrum).

If v and w are scalar valued and Φw(ω ) is a rational function of

ω 2 this is easy to do and furthermore G can always be chosen

to have stable poles.

Remark: If the characteristic polynomial for G(iω ) is

Πnk=1(s− λ k) then G∗ will have its poles as the mirrored in the

the imaginary axis.
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State-space model

State-space model with disturbances

ẋ(t) = Ax(t) + Bu(t) + Nw1(t)
z(t) = Mx(t) + Dzu(t)
y(t) = Cx(t) + Dyu(t) +w2(t)

where

w1 is called state- or system noise

w2 is called measurement- or output noise

How to handle colored noise?
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If w1 and w2 is colored noise then re-write w1 and w2 as output

signals from linear systems with white noise inputs v1 and v2 .

w1 = G1v1, w2 = G2v2

Make a state space realization of G1 and G2 and extend the

system description with these states

ẋ(t) = Ax(t) + Bu(t) + Nv1(t)
z(t) = Mx(t) + Dzu(t)
y(t) = Cx(t) + Dyu(t) + v2(t)

where the extended state x consists of the state x and the

states from the state-space realizations of G1 and G2.

A is the corresponding system matrix for the extended system
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Lecture 3: Summary

Look at all transfer functions the closed-loop system!

(Gang of Four / Gang of six)

Scalings

New today

Stochastic disturbances

From transfer function to output spectrum

From output spectrum to transfer function
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