Course Outline

L1-L5 Specifications, models and loop-shaping by hand
1. Introduction and system representations
2. Stability and robustness
3. Specifications and disturbance models
4. Control synthesis in frequency domain
5. Case study

L6-L8 Limitations on achievable performance
LL9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Lecture 2: Stability and Robustness

» Stability
» Robustness and sensitivity

» Small gain theorem

Demo: "Inverted pendulum”

Stability of autonomous systems

The autonomous system

dx

dt

is called exponentially stable if the following equivalent
conditions hold

= Ax(t)

1. There exist constants «, > 0 such that
|x(8)] < aeP|x(0)] fort >0

2. All eigenvalues of A are in the left half plane (LHP), that is
all eigenvalues have negative real part.

3. All roots of the polynomial det(sI — A) are in the LHP.

Stability of input-output maps

The transfer function G(s) of a continuous time system, is said
to be input-output stable (I/O-stable, or often just called
“stable”) if the following equivalent conditions hold:

» All poles of G have negative real part (G is Hurwitz stable)
» The impulse response of G decays exponentially.

Warning: There may be unstable pole-zero cancellations
(which also render the system either uncontrollable and/or
unobservable) and these may not be seen in the transfer
function!!
For discrete time systems the corresponding conditions are : a pulse transfer function
G(2) of a discrete time system

> All poles of G are inside the unit circle (G is Schur stable).

> The pulse response of G decays exponentially.
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> Review linear systems
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> Gain of systems

Stability is crucial
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Eigenvalues determine stability

The matrix A can always be written on the form

A * eht *
A=U U'. Hencee=U )
0 An 0 et

The number A4,..., 4, are the eigenvalues of A.

¢4t decays exponentially if and only if Re{1;} < 0 for all .

Stability of feedback loops

Go

The closed loop system is input-output stable if and only if all
solutions to the equation

1+ Go(s) =0

are in the left half plane (i.e. has negative real part).



The Nyquist criterion

If Go(s) is stable, then the closed loop system [1 + Gy(s)] ! is
stable if and only if the Nyquist curve does not encircle —1

The difference between the number of unstable poles in

[1 4 Go(s)]~! and the number of unstable poles in Go(s) is
equal to the number of times the point —1 is encircled by the
Nyquist plot in the clockwise direction.
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NOTE: nyquist-plot cmd in Matlab plots for both positive and negative frequencies!

Amplitude and phase margin

Amplitude margin A,,

arg G(ivo) = ~180°, |G(iwo)| = 4

Phase margin ¢,
|G(iw.)| =1, argG(iw.) = ¢, — 180°
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How sensitive is T' to changes in P?

C(s) P(s)

Note that the

» complementary sensitivity function 7' is the transfer
function G,_,,

» sensitivity function S is the transfer function G,

S+T=1

Note: there are four different transfer functions for this closed-loop system and all have
to be stable for the system to be stable!

It may be OK to use an unstable controller C

Sensitivity and Robustness

» How sensitive is the closed loop system to model errors?
» How do we measure the “distance to instability”?

» |s it possible to guarantee stability for all systems within
some distance from the ideal model?

Mini-problem
O e
-1

Nominally £ =1, ¢ =1and T = 0. How much margin is there in
each of the parameters before the system becomes unstable?

Gm = Inf, Pm = 109.4 deg (at 1.4142 rad/sec)
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Define the sensitivity function, S:

d(logT) dT/T 1
d(logP) ~ dP/P 1+ PC

S =

and the complementary sensitivity function 7':

Nyquist plot illustration

The sensitivity function measures the distance from the Nyquist
plotto —1.
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Lecture 2 Definition of vector norm

» Stability For x € R", we use the “Ly-norm”
. STy — a2
» Robustness and sensitivity x| = VaTx = y/af +--- + 3

» Small gain theorem

. i irections: 71| = [2 4] [u
Definition of matrix norm Different gains in different directions: [yz] = [0 3] [MJ

Inputu=[0.309  0.951]", u=1
R )

For M € R**", we use the “Lg-induced norm” osl-

| M x| xTMTMx = osr
M]| = SI;PW=SSP Tk \/MMTM) At

4 3 3 4
y=Gu=[442 285", y=526
51 ,/
Here 2(MT M) denotes the largest eigenvalue of MTM. The
fraction |Mx|/|x| is maximized when x is a corresponding = or
eigenvector.
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Example: matlab-demo
Example The Ls-norm of a signal
Matlab-code for singular value decomposition of the >> A=[2 4 ; 03]
matrix A=
Ao [2 4} 2 4
“lo 3 0 3 n « "
>> [U.5,V]=svd(A) For y(t) € R the “Lg-norm
SVD: U=

A=U-8-V* 0.8416  -0.5401 o 1 >
where both the matrices U and V are unitary (i.e. _ 0.5401 0.8416 I¥le == / ly(¢)|2dt is equal to 2*/ |Ly(iw)|2dw
have orthonormal columns s.t. V*-V =1)and S is S = 0 T J-

the diagonal matrix with (sorted decreasing) singular 5.2631 . 0
Multp va The equality is known as Parseval’s formula
Multiplying A with a input vector along the first col- - 0.3198  -0.9475

umnin V gives
0.9475 0.3198

A Vi) =USV" Vi) = >> A*V(:,1) The L,-gain of a system For a system § with input » and
1 = . .
=Us M =Upy-o1 5 an06 output S(u), the Lo-gain is defined as
2.8424
That is, we get maximal gain o in the output direc- ”5” = su ||5(u)||2
. ! . - >> U(:,1)*8(1,1) ‘= sup ff]
tion U,y if we use an input in direction V., (and ans = u Uuf2
minimal gain o, = o9 if we use the last column 4.4296
2.8424
Vien) = Vis)-
Miniproblem The L,-gain from frequency data

Consider a stable system § with input » and output S(x) having

Wh h i f the followi ? : .
atare the gains of the following systems the transfer function G(s). Then, the system gain

e IS@2 _ .
3(t) = —u(?) (a sign shift IS1 = SUp isequalto  |[|Gle := sup |G (iw)|
y(@E)=ut-T) (a time delay)
¢ Proof. Let y = S(u). Then
3 ¥(¢) =/ u(zr)dr (an integrator)
0

1 [= . 1 [ . .
bl = 57 [ 1ste)Pde = 5 [ |6G0)P 1u(io) o < |G ul?

t
4 ()= / e y()dr  (afirst order filter)
0 The inequality is arbitrarily tight when u(¢) is a sinusoid near
the maximizing frequency.



Example: Consider the transfer function matrix G (iw)

2 4
— +1 2s+1
G(s) = ss 83

s2+01s+1 s+1

>> s=tf(’s’)

>> G=[ 2/(s+1) 4/(2*s+1); s/(s72+0.1*s+1) 3/(s+1)];

>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain
ans =
10.3577

Robustness

How large perturbations A(iw) can be tolerated without

instability?

A(iw)
G(iw) —L

C(iw)

Proof

Define [lyllr = \/fy ly(¢)[%dz. Then [IS®)llz < ISl - Iyl

e1 =r1+ Sa(re + S1(e1))
lesll < lirallz + 1Szl (Iirallz + I3l lesliz )

letllr < Irallz + 152l - lIr2llz
LT—[ISall - ISzl

This shows bounded gain from (r1,72) to e;.

The gain to ey is bounded in the same way.

Lecture 2

Singular Values

| | system:
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Frequency (rad/sec)

Figure : The singular values of the tranfer function matrix (prev slide).

Note that G(0)=[2,4 ; 0 3] which corresponds to M in the
SVD-example above. |G|l = 10.3577.

The Small Gain Theorem

r e

] ra
So -

Assume that $; and Sy are input-output stable. If
[IS1]] - IS2]| < 1, then the gain from (r1,r2) to (ey, e2) in the
closed loop system is finite.

Application to robustness analysis

The transfer function from w to v is

C(io)G(iw)
1+ C(iw)G(iw)

Hence the small gain theorem guarantees stability if

uMw<Gw
[0)

‘1 f(Cl’cz)zw )G (iw) H)

» Stability

» Robustness and sensitivity

» Small gain theorem




