
Lecture 3

Disturbance modelling

This section reviews the main aspects in disturbance modelling and the corre-

sponding relations of descriptions in the time and frequency domain, respectively.

We will also consider the two related questions illustrated in Fig.3.1;

(i) Given a known input spectra and known transfer function, what is the spec-
tral density of the output

(ii) Given a known spectral density for a signal, find a stable linear system with
white noise input which gives the same spectral density on its output.

The latter problem is called the spectral factorization problem and will be used to

rewrite systems with coloured disturbances to an equivalent system with white

noise input, which will be used as a standard form for different estimation and

prediction problems later on in course.
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Figure 3.1 Illustration of two main questions of disturbance modelling in this chapter; (left)

What is the output spectral density Φyy given that we know the input spectral density Φuu
and and the linear filter G(iω )? (right) Knowing the output spectral density, find a stable
linear filter which gives the same output spectral density if fed by white noise.

3.1 Disturbances

In the basic control diagram of Fig. 3.2 we consider load disturbances d and

measurement noise n
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Figure 3.2 (Left) The basic control loop with load disturbances d and measurement noise n.

(Right) Load disturbances which can be measured, dm, e.g., changes in outer temperature, can

be (partially) compensated for by feedforward to the control signal.
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Lecture 3. Disturbance modelling

The load disturbance d drives the system from its desired state whereas the

measurement noise n corrupts the feedback information about z. Load distur-

bances can be divided into measurable load disturbances, dm, which partially can

be compensated by feedforward, and load disturbances which can’t be measured.

Even if we can’t measure ds in Fig. 3.2, statistical information like covariance or

spectral density will help us to design controllers which reduces/supresses the
effect of the disturbances with respect to e.g., average and variance of the control

objective z.

Example 1

In paper production there are a lot of disturbances which affect the paper quality

and the paper thickness. One objective is to keep down the variation in the paper

thickness, see Fig. 3.3.
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Figure 3.3 To be of acceptable quality, products must exceed a certain threshold. By min-

imizing the variance of the thickness we see that the average of the paper thickness can be

reduced significantly ( we come closer to the test limit) for the same yield. This may save a
lot in production costs regarding both energy and raw material.

All paper production below the test limit is wasted. Good control allows for

lower setpoint with the same yield. By having a lower variance of the production,

the average paper thickness can thus also be lower, which saves significant costs

in both energy and raw material. Keeping down the variance of the output will be

an important control objective for us in this course. 2

A first glimpse at linear stochastic control

In the previous example we saw that one objective could be to minimize the vari-

ance of the output or of a state. In a more general setting one can choose a trade-off

with respect to how much control action one will use by introducing a cost for this

as well.

Consider a system with state-disturbances w and measurement-disturbances

v. The LQ-problem (Linear system, Quadratic cost function) is then described as
follows:

Minimize

∫
(
xTQ1x + 2xTQ12u+ uTQ2u

)
dt

subject to ẋ = Ax + Bu+w
y= Cx + Du+ v

where v and w is white noise with intensity R1 and R2 respectively.
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3.1 Disturbances

A realization
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Figure 3.4 A stochastic process: For a fixed ω we call it a realization, for fixed time t1 it
will correspond to a random variable with a distribution F(ξ , t1) = Prob{x(t1) ≤ ξ}.

As we will see later on in this course, one can solve this as two independent

sub-problems thanks to the separation principle by considering

• Controller design for full state information, u = −Lx

• Optimal estimation of states (Kalman filter),

˙̂x = Ax̂ + Bu+ K (y− ŷ)

combination =[ Output feedback using observer u = −Lx̂...

Before we do this we will have a closer look on how to describe disturbances using

statistical properties.

Stochastic processes

A stochastic process (random process, random function) is a family of stochastic
variables {x(t), t ∈ T}where t represents time. The stocastic process can be viewed
as a function of two variables x(t,ω ). For a fixed ω = ω 0 it gives a time function
x(⋅,ω 0), often called a realization, whereas if we fix the time t = t1 it gives a
random variable x(t1, ⋅) with a certain distribution, see Fig. 3.4.
For a zero-mean stationary stochastic processes the distribution is independent

of t. We refer to the basic course in statistics for more details on the following con-

cepts:

Mean-value function

Ex(t) " 0
Covariance function. A zero mean Gaussian process x is completely determined

by its covariance function:

Rx(τ ) = Ex(t+ τ )x(t)T

Cross-covariance function

Rxy(τ ) = Ex(t+ τ )y(t)T

Spectral density (defined for (weakly) stationary processes). The spectral den-
sity is the Fourier transform of the covariance function

Φxy(ω ) =
∫ ∞

−∞
Rxy(t)e−itω dt
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Lecture 3. Disturbance modelling

and

Rxy(t) =
1

2π

∫ ∞

−∞
eitω Φxy(ω ) dω

In particular, we get the following expressions for the covariance matrix:

ExxT = Rx(0) =
1

2π

∫ ∞

−∞
Φxx(ω ) dω

When x is scalar, this is simply the variance of x. (Notation: We will use Φy as
short for Φyy.)

For relations between covariance function, spectral density and a typical real-

ization, see Fig. 3.5, where one may notice that the realizations seem to be "more

random" the flatter the spectra is (over a larger frequency range) while peaks in
the spectral density corresponds to periodic covariance functions.
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Figure 3.5 Relations between covariance function, spectral density and a typical realization.

Correction: The spectra should be divided by 2π

White noise

A particular disturbance is so-called white noise e with intensity R. Here R is a

constant matrix, which corresponds to a constant spectrum, totally flat and equal

for all frequencies:

Φ e(ω ) = R
One effect of this definition is that the continuous-time version of white noise has

infinite energy, and causes some issues to be handled mathematically rigorously,

but we will not go into these details here.
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3.1 Disturbances

The most important property of white noise which we will use below, is that

it can not be predicted; based on previous measurements there is no information

about future values (infinite variance). From transform theory we also have that
the Fourier transform of the Dirac pulse δ (t), is constant, which corresponds to an
alternative interpretation: by applying a Dirac impulse as input to a linear system,

the spectral density of the corresponding output (i.e., of the impulse response),
will be like a finger-print of the system’s frequency properties.

The two problems related to Fig. 3.1 can be formulated as

1. Determine the covariance function and spectral density of y when white

noise u is filtered through the linear system

ẋ = Ax + u(k)
y= Cx

2. Conversely, find filter parameters for a stable linear filter, A and C, to give

the output y a desired spectral density.

G(s)
u y

What is the output spectral density for y if the input u has spectral density Φu(ω )?
We use the transfer function representation

Y(iω ) = G(iω )U(iω )

where Y = F {y}, U = F {u} are the Fourier transforms. According to the defini-
tion, we get

Φy(ω )=̂Φyy(ω ) = Y(iω )Y(iω )∗ = G(iω )U(iω )U(iω )∗G(iω )∗

where we can identify the spectral density of the output as

Φyy(ω ) = G(iω )Φuu(ω )G(iω )∗

G(s)
u y

In similar way we find the cross-spectral density

Φyu(ω ) = G(iω )Φuu(ω )

Spectral factorization

The next question is then how we go "backwards" according to Fig. 3.1 right, to

find what linear filter which will do.

• Assume that the disturbance w has spectrum Φw(ω )

• (Spectral factorization) Assume that we can find a transfer function G(s)
such that G(iω )RG(iω )∗ = Φw(ω ) for a constant R.

In that case we can consider w as an output from the linear system G with white

noise as input, Φv(ω ) = R (equal energy for all frequencies/flat spectrum).
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THEOREM 3.1

Spectral factorization [G&L 5.3] Assume that the real, scalar valued function
Φw(ω ) ≥ 0 is a rational function of ω 2. Then there exists a rational function
G(s) with all poles strictly in the left half plane and all zeros in the left half plane
or on the imaginary axis such that

Φw(ω ) = pG(iω )p2 = G(iω )G(−iω )

If v and w are scalar valued and Φw(ω ) is a rational function of ω 2 it is easy to
follow the proof in [Glad & Ljung] and factorize to first or second order polynomials
ofω 2 in both the numerator and the denominator. These can then be split in stable
and unstable poles, respectively, and comes from the fact that if the characteristic

polynomial for G(iω ) is Πnk=1(iω − λ k) then G∗ = G(−iω ) will have its poles
mirrored in the the imaginary axis. This is done in transfer function form, and in

the next section we will see how this looks in state-space representation.

Assume we have state-space model with disturbances

ẋ(t) = Ax(t) + Bu(t) + Nw1(t)
z(t) = Mx(t) + Dzu(t)
y(t) = Cx(t) + Dyu(t) +w2(t)

where

• w1 is called state- or system noise

• w2 is called measurement- or output noise

The question is how to handle coloured noise?

If w1 and w2 is coloured noise with known or estimated spectral density then

re-write w1 and w2 as output signals from linear systems with white noise inputs

v1 and v2 .

w1(t) = G1(p)v1(t), w2(t) = G2(p)v2(t)
where p = d

dt
(corresponding to the Laplace s in frequency domain).

Make a state space realization of G1 and G2 and extend the system description

with these states

ẋ(t) = Ax(t) + Bu(t) + Nv1(t)
z(t) = Mx(t) + Dzu(t)
y(t) = Cx(t) + Dyu(t) + v2(t)

where the extended state x consists of the state x and the states from the state-

space realizations of G1 and G2.

A is the corresponding system matrix for the extended system etc. We illustrate

this procedure with an example.

Example 2

Consider the system

ẋ1 = −7x1 + u+w1
y= x1 +w2

where w1 is coloured noise with spectral density

Φw1 =
9

ω 2 + 4 =(spectral factorization)=
3

(iω + 2)
3

(−iω + 2)

6



3.1 Disturbances

We can then introduce a state-space form of this transfer function, representing

the coloured noise w1 as

ẋ2 = −2x2 + 3v1
w1 = x2

where v1 is white noise with intensity 1. The system can now be written as

ẋ1 = −7x1 + u+ x2
ẋ2 − 2x2 + 3v1
y= x1 +w2

and we can proceed in the same way with the coloured noise w2 2

Covariance and spectral density for a state vector

Consider the linear system

ẋ = Ax + Bv, Φv(ω ) = Rv

We can calculate the transfer function from noise to state as

Gv→x(s) = (sI − A)−1B

and the spectral density for x will thus be

Φx(ω ) = (iω I − A)−1BRv B∗(−iω I − A)−T
︸ ︷︷ ︸

((iω I−A)−1B)∗

ẋ = Ax + Bv, Φv(ω ) = Rv

One way to calculate the covariance matrix for state x is

Πx = Rx =
1

2π

∫ ∞

−∞
Φx(ω )dω

However there is an alternative way of calculating Πx

THEOREM 3.2—[GLAD&LJUNG 5.3]

If all eigenvalues of A are strictly in the left half plane (i.e. Re{λ k} < 0) then
there exists a unique matrix Πx = ΠTx > 0 which is the solution to the matrix
equation

AΠx + ΠxA
T + BRvBT = 0

We will see that a similar formula can be used to calculate the optimal gain K

in the Kalman filter with respect to measurement and state noise covariances.

An intuitive interpretation how large the gain K should be is that if we have

much state noise but little output noise (i.e, reliable measurements), then the
optimization chooses a large gain which "trusts" the measurements. With very

large measurement noise, it will choose a low gain which means that the observer

will almost run in open-loop; trusting the model and gaining very little information

from the measurements.
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Example 3

Consider the system

ẋ = Ax + Bv =
[−1 2

−1 0

] [
x1

x2

]

+
[
1

0

]

v

where v is white noise with variance Rv = 1.

What is the covariance for x?

First check the eigenvalues of A : λ = − 1
2
± i

√
7
2
∈ LHP. OK!

Solve the Lyapunov equation

AΠx + ΠxA
T + BRBT = 02$2

Find Πx:

[−1 2

−1 0

] [
Π11 Π12

Π12 Π22

]

+
[

Π11 Π12

Π12 Π22

] [−1 −1
2 0

]

+
[
1

0

]

[ 1 0 ] =

=
[
2(−Π11 + 2Π12 + 1 −Π12 + 2Π22 − Π11

−Π12 + 2Π22 − Π11 −2Π12

]

=
[
0 0

0 0

]

Solving for Π11, Π12 and Π22 gives

=[ Πx =
[

Π11 Π12

Π12 Π22

]

=
[
1/2 0

0 1/4

]

> 0

In matlab: lyap([-1 2; -1 0],[1 ; 0]*[1 0])

2
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