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Lecture 12: Internal Model Cont rol

◮ Youla Parametrization
◮ Internal Model Control
◮ Dead Time Compensation

Section 8.4 in Glad/Ljung.

The Q-parametrization (Youl a)
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Idea for lecture 12-14:
The choice of controller generally corresponds to finding Q(s),
to get desirable properties of the map from w to z:

z w

Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) is determined, a corresponding controller is found.

The Youl a Parametrization
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The closed loop transfer matrix from w to z is

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s)

where

Q(s) = C(s)
[
I + Pyu(s)C(s)

]−1

C(s) = Q(s) + Q(s)Pyu(s)C(s)

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)

Closed loop stabi li ty for stable plants

Suppose the original plant P is stable. Then

◮ Stabilty of Q(s) implies stability of Pzw(s) − Pzu(s)Q(s)Pyw(s)

◮ If Q = C
[
I + PyuC

]−1 is unstable, then small measurement
errors gives unbounded input errors.

Closed loop stabi li ty for uns table plants
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In case P0(s) is unstable, let C0(s) be a stabilizing controller.
Then the previous argument can be applied with Pzw, Pzu and
Pyw representing the stabilized closed loop system.

Next lecture: Synthesis by convex opt imization

A general control synthesis problem can be stated as a convex
optimization problem in the variable Q(s). The problem could
have a quadratic objective, with linear/quadratic constraints:

Minimize
∫∞
−∞ pPzw(iω ) + Pzu(iω )

Q(iω )
︷ ︸︸ ︷
∑

k

Qkφk(iω ) Pyw(iω )p
2dω

}

quadratic objective

subject to
step response wi → zj is smaller than fi jk at time tk
step response wi → zj is bigger than �i jk at time tk

}

linear constraints

Bode magnitude wi → zj is smaller than hi jk at ω k
}

quadratic constraints

Once the variables Q0, . . . ,Qm have been optimized, the
controller is obtained as C(s) =

[
I − Q(s)Pyu(s)

]−1
Q(s)

Example — DC-motor

+

+

+

+

20
s(s+1)C(s)

−1

z2w1

w2

z1

The transfer matrix from (w1,w2) to (z1, z2) is

Gzw(s) =

[
P

1+PC
−PC
1+PC

1
1+PC

−C
1+PC

]

where P(s) = 20
s(s+1) . How should we choose stable Pzw, Pzu,

Pyw and Q to get

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s) ?

Stabi lizing nom inal feedback for DC-motor
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The plant P(s) = 20
s(s+1) is not stable, so write

C(s) = C0(s) + C1(s)

where C0(s) " 1 is a stabilizing controller.
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Redraw diagram for DC motor example
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Gzw(s) =

[
Pc −Pc
1− Pc Pc − 1

]
+

[
Pc
1− Pc

]
Q
[
Pc 1− Pc

]

where Pc(s) = (1+ P(s))−1P(s) = 20

s2+s+20
is stable.

Out line

○ Youla Parametrization

• Internal Model Control

○ Dead Time Compensation

Internal Model Cont rol
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Feedback is used only as the real process deviates from P(s).

The transfer function Q(s) defines how the desired input
depends on the reference signal.

When P = P0, the transfer function from r to y is P(s)Q(s).

Two equi valent diagrams
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Internal Model Cont rol — Strictly proper plants

When P = P0, the transfer function from r to y is P(s)Q(s).

Hence, ideally, one would like to put Q(s) = P(s)−1. For several
reasons this is not possible for accurate process models:

◮ If P(s) is strictly proper, the inverse would have more zeros
than poles. Alternatively, one could choose

Q(s) =
1

(λs+ 1)n
P(s)−1

where n is large enough to make Q proper. The parameter
λ influences the speed of control.

Internal Model Cont rol — Zeros and delays

Once again, ideally, one would like to put Q(s) = P(s)−1.

Here are other reasons why this is often not possible:

◮ If P(s) has unstable zeros, the inverse would be unstable.
Alternatively, one could either remove every unstable factor
(−β s+ 1) from the plant numerator before inverting, or
replace it by (β s+ 1). With the latter alternative, only the
phase is modified, not the amplitude function.

◮ If P(s) includes a time delay, its inverse would have to
predict the future. Instead, the time delay is removed
before inverting.

Example 1 — First order plant model

P(s) =
1

τ s+ 1

Q(s) =
1

λs+ 1
P(s)−1 =

τ s+ 1

λs+ 1

C(s) =
Q(s)

1− Q(s)P(s)
=

τ s+1
λs+1

1− 1
λs+1

=
τ

λ

(
1+

1

sτ

)

︸ ︷︷ ︸
PI controller

Example 2 — Non-minimum phase plant

P(s) =
−β s+ 1

τ s+ 1

Q(s) =
(−β s+ 1)

(β s+ 1)
P(s)−1 =

τ s+ 1

β s+ 1

C(s) =
Q(s)

1− Q(s)P(s)
=

τ s+1
β s+1

1− (−β s+1)
(β s+1)

=
τ

2β

(
1+

1

sτ

)

︸ ︷︷ ︸
PI controller



3

Out line

○ Youla Parametrization

○ Internal Model Control

• Dead Time Compensation

Dead Time Compens ation

Consider the plant model

P(s) = P1(s)e
−sτ

Let C0 = Q/(1− QP1) be the controller we would have used
without delays. Then Q = C0/(1+ C0P1).

The rule of thumb tell us to use the same Q also for systems
with delays. This gives

C(s) =
Q(s)

1− Q(s)P1(s)e−sτ
=

C0/(1+ C0P1)

1− e−sτ P1C0/(1+ C0P1)

C(s) =
C0(s)

1+ (1− e−sτ )C0(s)P1(s)

This modification of the C0(s) to account for time delays is
known as dead time compensation according to Otto Smith.

Smith Compens ator
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Idea: Make an internal model of the process (with and without
the delay) in the controller. Ideally Y and Y1 cancel each other
and use feedback from Y2 "without delay".

Smith Compens ator
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Y(s) = e−sτ
C0(s)P1(s)

1+ C0(s)P1(s)
R(s)

◮ Delay eliminated from denominator!
◮ Reference response greatly simplified!

Smith Compens ator — A Success Story!
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◮ Intriguing properties
◮ Numerous modifications
◮ Many industrial applications

Otto J.M. Smith listed in the ISA “Leaders of the Pack” list
(2003) as one of the 50 most influential innovators since 1774.

Example: Dead Time Compens ation

Otto Smith compensator (thick) and standard PI controller (thin)
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Börvärde

Youl a parametrization revisited

The Youla-parametrization:
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where Cnom stabilizes the [P,C]-system and
Q(s) is any stable transfer function.

Nominal Cont rol ler

Linear system with observer

Observer
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In equations
˙̂x = Ax̂ + Bu(k) + K e(k)

u = r − Lx̂

e = y− Cx̂
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Summary of Internal Model Cont rol

◮ Q(s) can be designed by hand for simple plants
◮ Ideas applicable also to multivariable plants
◮ Warning:

Cancellation of slow poles gives poor disturbance rejection


