Lecture 12: Internal Model Control

» Youla Parametrization
» Internal Model Control
» Dead Time Compensation

Section 8.4 in Glad/Ljung.

The Youla Parametrization

z w
~] Pzw PZM D
e
y u
—C(s)

The closed loop transfer matrix from w to z is
sz(s) = Pzw(s) - qu(s)Q(s)wa(S)
where

Q(s) = C(s)[I + Pu(s)C(s)] "
C(s) = Q(s) + Q(s)Py.(s)C(s)
C(s) = [I - Q(s)Pyu(s)] ' Q(s)

Closed loop stability for unstable plants
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In case Py(s) is unstable, let Cy(s) be a stabilizing controller.
Then the previous argument can be applied with P,,, P,, and
Py, representing the stabilized closed loop system.

Example — DC-motor
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The transfer matrix from (w1, ws) t0 (21,22) is
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where P(s) = %. How should we choose stable P,,,, P,

P, and Q to get
sz(s) = Pzw(s) - qu(s)Q(s)wa(s) ?

The @-parametrization (Youl a)
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Idea for lecture 12-14:
The choice of controller generally corresponds to finding Q(s),
to get desirable properties of the map from w to z:
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Once Q(s) is determined, a corresponding controller is found.

Closed loop stability for stable plants

Suppose the original plant P is stable. Then

> Stabilty of @(s) implies stability of P, (s) — P,.(s)Q(s)Pyu(s)

»fQ=C[I+ PVWC}_1 is unstable, then small measurement
errors gives unbounded input errors.

Next lecture: Synthesis by convex optimization

A general control synthesis problem can be stated as a convex
optimization problem in the variable @(s). The problem could
have a quadratic objective, with linear/quadratic constraints:
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Minimize [0 [P (i®) + Pz (io) Z Q191 (i0) Py (io) 2 dw } quadratic objective
&

step response w; — z; is smaller than f;;;, at time ¢,

Subject 0 o, response w; — 2, is bigger than g, s at time t;

} linear constraints

Bode magnitude w; — z; is smaller than h;;, at @y, } quadratic constraints

Once the variables @y, ..., @, have been optimized, the
controller is obtained as C(s) = [I — Q(s)Py, (s)}_lQ(s)

Stabilizing nominal feedback for DC-motor
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The plant P(s) = 2%y is not stable, so write

C(s) = Co(s) + Ci(s)

where Cy(s) = 1is a stabilizing controller.



Redraw diagram for DC motor example
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where P.(s) = (1+ P(s)) 7' P(s) = 7225 is stable.

Internal Model Control
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Feedback is used only as the real process deviates from P(s).

The transfer function Q(s) defines how the desired input
depends on the reference signal.

When P = P,, the transfer function from r to y is P(s)Q(s).

Internal Model Control — Strictly proper plants

When P = Py, the transfer function from r to y is P(s)Q(s).

Hence, ideally, one would like to put @(s) = P(s)~*. For several
reasons this is not possible for accurate process models:

» If P(s) is strictly proper, the inverse would have more zeros
than poles. Alternatively, one could choose
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where n is large enough to make @ proper. The parameter
A influences the speed of control.

Example 1 — First order plant model
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Two equivalent diagrams

Internal Model Control — Zeros and delays

Once again, ideally, one would like to put @(s) = P(s)~*.

Here are other reasons why this is often not possible:

» If P(s) has unstable zeros, the inverse would be unstable.
Alternatively, one could either remove every unstable factor
(—pBs + 1) from the plant numerator before inverting, or
replace it by (Bs + 1). With the latter alternative, only the
phase is modified, not the amplitude function.

» If P(s) includes a time delay, its inverse would have to
predict the future. Instead, the time delay is removed
before inverting.

Example 2 — Non-minimum phase plant
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Smith Compens ator

Controller

Idea: Make an internal model of the process (with and without
the delay) in the controller. Ideally Y and Y7 cancel each other
and use feedback from Y5 "without delay".

Smith Compensator — A Success Story!

Controller

» Intriguing properties
» Numerous modifications
» Many industrial applications

Otto J.M. Smith listed in the ISA “Leaders of the Pack” list

(2003) as one of the 50 most influential innovators since 1774.

Youl a parametrization revisited

The Youla-parametrization:
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where C,om Stabilizes the [P, C]-system and
Q(s) is any stable transfer function.

Dead Time Compensation

Consider the plant model
P(s) = Py(s)e™™"

Let Cp = @/(1 — @P4) be the controller we would have used
without delays. Then @ = Cy/(1 + CoP4).

The rule of thumb tell us to use the same @ also for systems
with delays. This gives

C(s) = Q(s) _ Co/(1 + CoPr)
T 1-— Q(s)Pl(s)e—ST T 1-— e_STP1C()/(1 + C()Pl)
C(s) = Co(s)

T 1+ (1—e757)Co(s)Pa(s)

This modification of the Cy(s) to account for time delays is
known as dead time compensation according to Otto Smith.

Smith Compens ator

Controller
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» Delay eliminated from denominator!
» Reference response greatly simplified!

Example: Dead Time Compens ation

Otto Smith compensator (thick) and standard PI controller (thin)

Nominal Controller

Linear system with observer
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In equations
% = A% + Bu(k) + Ke(k)
u=r—L%
e=y—C%



Summary of Internal Model Control

» Q(s) can be designed by hand for simple plants
» ldeas applicable also to multivariable plants

» Warning:
Cancellation of slow poles gives poor disturbance rejection




