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Lecture 9: Linear Quadratic Cont rol

◮ Why Linear Quadratic Control?

◮ Dynamic Programming

◮ Riccati equation

◮ Optimal State Feedback

◮ Stability and Robustness

The sections 9.1-9.4 in the book treat essentially the same
material as we cover in lecture 9-11. However, the main
derivation of the LQG controller in appendix 9A is different.

Math Repetition

Suppose the matrix Q is symmetric: Q = QT . Then

◮ Q > 0 means that xTQx > 0 for any x ,= 0
◮ True iff all eigenvalues of Q are positive.
◮ We say that Q is positive definite.

◮ Q ≥ 0 means that xTQx ≥ 0 for any x ,= 0
◮ True iff all eigenvalues of Q are non-negative.
◮ We say that Q is positive semidefinite.

Math Repetition

The trace of a matrix is the sum of all diagonal elements:

trace Q =
n

∑

i

Qii

A useful property of the matrix trace:

trace ABC = trace CAB = trace BCA

Parseval’s formula: Suppose that f (t) and �(t) have finite
energy and that their Laplace transforms are F(s) and G(s),
respectively. Then

2π

∫ ∞

−∞
f (t)∗�(t)dt =

∫ ∞

−∞
F(iω )∗G(iω )dω
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Test limit

Paper thickness

All paper production below the test limit is wasted.
Good control allows for lower setpoint with the same waste.
The average thickness is lower, which saves significant costs.

A General Opt imization Setup

Plant

Controller

� �

�

-

control inputs u

controlled variables z

measurements y

distubances w

The objective is to find a controller that optimizes the transfer
matrix Gzw(s) from disturbances w to controlled outputs z.

Lecture 9-11: Problems with analytic solutions
Lectures 12-14: Problems with numeric solutions

Today’s problem: State Feedback
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u

z = (x,u) x0

state measurement x

Minimize
∫ ∞

0

(

x(t)TQ1x(t) + 2x(t)TQ12u(t) + u(t)TQ2u(t)
)

dt

subject to ẋ = Ax(t) + Bu(t), x(0) = x0

(

This minimizes impulse response
∫∞
0
zT

[

Q1 Q12
QT
12

Q2

]

zdt when z =
[

x

u

]

)
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Mini -problem

Determine u0 and u1 as functions of x0 if the objective is to
minimize

x21 + x22 + u20 + u21

when

x1 = x0 + u0
x2 = x1 + u1

Hint: Go backwards in time.

Dynamic progr amming, Richard E. Bellman 1957

T1 T1 + ǫ T

An optimal trajectory on the time
interval [T1,T ] must be optimal
also on each of the subintervals
[T1,T1 + ǫ] and [T1 + ǫ,T ].

Dynamic progr amming in linear quadratic cont rol

T1 T1 + ǫ T

An optimal trajectory on the time interval [T1,T ] must be optimal also on each

of the subintervals [T1,T1 + ǫ] and [T1 + ǫ,T ].

Let xTSx be the optimal cost on the time interval [T1,∞]:

xTSx = min
u

∫ ∞

T1









x

u









T 







Q1 Q12
QT12 Q2

















x

u








dt with x(T1) = x

Let u = u(T1). Split interval to [T1,T1 + ǫ] and [T1 + ǫ,∞] with ǫ small.
Neglecting ǫ

2 gives x(T1 + ǫ) = x + (Ax + Bu)ǫ

Dynamic progr amming in linear quadratic cont rol

x(T1) = x, x(T1 + ǫ) = x + (Ax + Bu)ǫ

xTSx = min
u

∫ ∞

T1









x

u









T 







Q1 Q12
QT12 Q2

















x

u








dt

= min
u

{









x

u









T 







Q1 Q12
QT12 Q2

















x

u








ǫ+

∫ ∞

T1+ǫ









x

u









T 







Q1 Q12
QT12 Q2

















x

u








dt

}

= min
u

{









x

u









T 







Q1 Q12
QT12 Q2

















x

u








ǫ+

[

x + (Ax + Bu)ǫ
]T

S
[

x + (Ax + Bu)ǫ
]

}

by definition of S. Again neglecting ǫ
2 gives Bellm an’s

equation:

0 = min
u

[(

xTQ1x + 2xTQ12u+ uTQ2u
)

+ 2xTS
(

Ax + Bu
)

]

Lecture 9: Linear Quadratic Cont rol

◮ Why Linear Quadratic Control?

◮ Dynamic Programming

◮ Riccati equation

◮ Optimal State Feedback

◮ Stability and Robustness

Completion of squares

The scalar case: Suppose c > 0.

ax2 + 2bxu+ cu2 = x
(

a− b
2

c

)

x +
(

u+ b
c
x

)

c

(

u+ b
c
x

)

is minimized by u = − b
c
x. The minimum is

(

a− b2/c
)

x2.

The matrix case: Suppose Qu > 0. Then

xTQxx + 2xTQxuu+ uTQuu
= (u+ Q−1u QTxux)TQu(u+ Q−1u QTxux) + xT(Qx − QxuQ−1u QTxu)x

is minimized by u = −Q−1u QTxux. The minimum is
xT(Qx − QxuQ−1u QTxu)x.

The Riccati Equation

Completion of squares in Bellman’s equation gives

0 = min
u

((

xTQ1x + 2xTQ12u+ uTQ2u
)

+ 2xTS
(

Ax + Bu
)

)

= min
u

(

xT [Q1 + ATS+ SA]x + 2xT [Q12 + SB]u+ uTQ2u
)

= xT
(

Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T
)

x

with minimum attained for u = −Q−12 (SB + Q12)T x.

The equation

0 = Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T

is called the algebraic Riccati equation

Jocopo Francesco Riccati, 1676–1754
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Linear Quadratic Opt imal Cont rol

Problem:

Minimize
∫ ∞

0

(

x(t)TQ1x(t) + 2x(t)TQ12u(t) + u(t)TQ2u(t)
)

dt

subject to ẋ = Ax(t) + Bu(t), x(0) = x0

Solution: Assume (A, B) controllable. Then there is a unique
S > 0 solving the Riccati equation

0 = Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T

The optimal control law is u = −Lx with L = Q−12 (SB + Q12)T .
The minimal value is xT0 Sx0.

Remark: The feedback gain L does not depend on x0

Example: First order sys tem

For ẋ(t) = u(t), x(0) = x0,

Minimize
∫ ∞

0

{

x(t)2 + ρu(t)2
}

dt

Riccati equation 0 = 1− S2/ρ [ S = √ρ

Controller L = S/ρ = 1/√ρ [ u = −x/√ρ

Closed loop system ẋ = −x/√ρ [ x = x0e−t/
√

ρ

Optimal cost
∫ ∞

0

{

x2 + ρu2
}

dt = xT0 Sx0 = x20
√

ρ

What values of ρ give the fastest response? Why?
What values of ρ give smallest optimal cost? Why?
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Theorem: Stabi li ty of the closed-loop sys tem

Assume that

Q =








Q1 Q12
QT12 Q2









is positive definite and that there exists a positive-definite
steady-state solution S to the algebraic Riccati equation. Then
the optimal controller u(t) = −Lx(t) gives an asymptotically
stable closed-loop system ẋ(t) = (A− BL)x(t).
Proof:

d

dt
x(t)TSx(t) = 2xTSẋ = 2xTS(Ax + Bu)

= −
(

xTQ1x + 2xTQ12u+ uTQ2u
)

< 0 for x(t) ,= 0

Hence x(t)TSx(t) is decreasing and tends to zero as t→∞.

How to solve the LQ problem in Matlab

[L,S,E] = LQR(A,B,Q,R,N) calculates the optimal gain

matrix L such that the state-feedback law u = -Lx

minimizes the cost function

J = Integral x’Qx + u’Ru + 2*x’Nu dt

subject to the system dynamics dx/dt = Ax + Bu

E = EIG(A-B*L)

LQRD solves the corresponding discrete time problem

Example – Doub le integrator

A =








0 1

0 0








B =









0

1








Q1 =









1 0

0 0








Q2 = ρ x(0) =









1

0









States and inputs (dotted) for ρ = 0.01, ρ = 0.1, ρ = 1, ρ = 10
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Closed loop poles:
s = 2−1/2ρ−1/4(−1± i)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Stabi li ty robustness of opt imal state feedback
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Nyquist Diagram
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Notice that the distance from L(iω I − A)−1B to −1 is never
smaller than 1. This is always true(!) for linear quadratic optimal
state feedback when Q1 > 0, Q12 = 0 and Q2 = ρ > 0 is scalar.
Hence the phase margin is at least 60○.
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Proof of stabi li ty robustness

Using the Riccati equation

0 = Q1 + ATS+ SA− LTQ2L L = Q−12 (SB + Q12)T

it is possible to show that

[

I + L(iω − A)−1B
]

∗

Q2

[

I + L(iω − A)−1B
]

=
[

(iω − A)−1B
I

]

∗
[

Q1 Q12
Q∗
12

Q2

][

(iω − A)−1B
I

]

In particular, with Q1 > 0, Q12 = 0, Q2 = ρ > 0
[

1+ L(iω − A)−1B
]

∗

ρ

[

1+ L(iω − A)−1B
]

= BT [(iω − A)−1]∗Q1(iω − A)−1B + ρ

≥ ρ

Dividing by ρ gives

p1+ L(iω − A)−1Bp ≥ 1
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Next Lecture: Linear Quadratic Gaussian Cont rol

Plant

Controller

� �

�

-

control inputs u

controlled variables z

measurements y

distubances w

For a linear plant, minimize a quadratic function of the map
from disturbance w to controlled variable z

Minimize trace
∫∞
−∞ QGzw(iω )Gzw(iω )∗dω


