Lecture 8: Multivariable and Decentralized Control

v

Transfer functions for MIMO-systems
» vehicles
» power network
» process control industry

Limitations due to unstable multivariable zeros

v

» Decentralized/decoupled control by pairing of signals
Short warning on integral action in parallel systems

v

See “Lecture notes” and [G&L, Ch. 1 and 8.1-8.3]

Example MIMO-system: A Distillation Column

Example: Distillation column: raw oil inserted at bottom —
different petro-chemical subcomponents extracted

4 —2Ts 18 o 59 g
|:Y1(S):| 50s+1° 60s+1° 50s +1° 518
= 2
Ya(s) 54 s BT s 89 sl |uy(s)
50s + 1 60s + 1 405 + 1
P(s)
Outputs: Inputs:

y1 = top draw composition  u; = top draw flowrate
yo = side draw composition uy = side draw flowrate
u3 = bottom temperature control input

Sensitivity functions for MIMO-systems

Qutput sensitivity function

G?—>?
S=(I+PC)?
Input sensitivity function
-1 G?—>7
(I+cCP)
Complementary sensitivity function G
?7—-?

T = (I + PC)~'PC

1-minute problem:

Find the transfer functions above in the block diagram on
the previous slide. (Extra: What are the dimensions?)
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Typical Process Control System

Xl —Depropani
Xl = Hydrofluoric Acid
Stripper

A —Olefins
B —Fresh lsobutane
— Fresh Hydrofluoric
Adid from Tank Cor
ter

Figure 13-6. Autometic control system for Perco motor fuel alkylation process.

Multivariable transfer functions

Order matters!!

X(s) = PCF-R(s)+ P-D(s) — PC - [N(s) + X (s)]
[I + PC]X (s) = PCF - R(s) + P- D(s) — PC - N(s)

X(s)=[I+PC|™' - (PCF-R(s)+P-D(s) — PC- N(s))
Notice that [I + PC]~! is generally not the same as [I + CP]1.

Some useful math relations

Notice the following identities:
() I+ PC]7'P=P[I+CP|!
(i) C[I+PC|™' =[I+CP|"'C
(iii) T =PI +CP|"1C = PC[I + PC|™' = [I + PC|"'PC
(v) S+T=1

Proof:
The first equality follows by multiplication on both sides with
(I + PC) from the left and with (I + CP) from the right.

Left: [ + PC|[I + PC)™*P[I + CP]=1I-[P+ PCP] = [I + PC]P
Right: [I + PC]P[I + CP|}[I + CP] = [I + PC]P I = [I + PC]P
—“Push through and keep track of order”

Limitations due to unstable zeros

For a multivariable system with square tranfer matrix P(s), i.e.
the same number of inputs and outputs, the zeros can be
defined as the poles of P(s)~!. The following theorem captures
the influence of an unstable zero:

Theorem

Let Wg(s) be stable and let S(s) = [I + P(s)C(s)]~! be the
sensitivity function of a stable closed loop system. Then, the
specification

[WsSlleo <1

is impossible to satisfy unless ||Ws(2)|| < 1 for every unstable
zero z of P(s).



Non-minimum phase MIMO System

Example [G&L, Ch 1]
Consider a feedback system Y (s) = (I + PC)~! - R(s) with the
multivariable process

Computing the determinant

2 3 _ —s+1
(s+1)2 (s+2)(s+1) (s+1)2(s+2)

det P(s) =

shows that the process has an unstable zero at s = 1, which
will limit the achievable performance.

See lecture notes for details of the following slides (checking
three different controllers)

Step respons es using controller 1
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Figure: Closed loop step responses with decoupling controller C; (s)
for the two outputs y; (solid) and y. (dashed). The upper plot is for a
reference step for y;. The lower plot is for a reference step for ys.

Step respons es using controller 2
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Figure: Closed loop step responses with controller Cy(s) for the two
outputs y; (solid) and y, (dashed). The right half plane zero does not
prevent a fast yq-response to ry but at the price of a simultaneous
undesired response in y.

Step respons es using controller 3

Step Response

Amplitude
S
'

5 6
Time (sec)

Step Response

Ampltude
N

Time (sec)
Figure: Closed loop step responses with controller Cs(s) for the two
outputs y; (solid) and y, (dashed). The right half plane zero does not
prevent a fast y;-response to r; but at the price of a simultaneous
undesired response in ys.

Example — controller 1

The controller

Kist1)  _3Ky(s+03)
Ci(s) = {_Kls(s-#l) 2K:((s8:c%) }
s s(s+1)

gives the diagonal loop transfer matrix

Ki(—s+1) 0
P(s)Cy(s) = [ 3(532) K2(3+0.5)(—s+1):|
s(s+1)(s+2)

Hence the system is decoupled into to scalar loops, each with
an unstable zero at s = 1 that limits the bandwidth.

The closed loop step responses are shown in Figure ?7?.

Example — controller 2

The controller

Ki(s+1) K.
Co(s) = & 2
2(8) |:_K1(z+1) KJ

gives the diagonal loop transfer matrix

Ki(—s+1)  Ky(5s+7)
P(s)Cq(s) = { 8(832) (s+g)lg+1)}
s+1
Now the decoupling is only partial:
Output ys is not affected by ;. Moreover, there is no unstable
zero that limits the rate of response in ys!

The closed loop step responses for K; = 1, Ko = 10 are shown
in Figure ??.

Example — controller 3

The controller

—Ky(s+0.5)
C3(S) — K1 sz(s+2)
K e

gives the diagonal loop transfer matrix

Ky (55+7) 0
1 2
P(s)C3(s) = [(s+2)1§+ ) K2(1+s)(s+0.5)]
s+1 s(s+1)2(s+2)

In this case y; is decoupled from ry and can respond arbitrarily
fast for high values of K, at the expense of bad behavior in ys.
Step responses for K; = 10, K, = —1 are shown in Figure ??.

Example — summary

To summarize, the example shows that even though a
multivariable unstable zero always gives a performance
limitation, it is possible to influence where the effects should
show up.
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Rosenbrock’s Example

There is a nice collection of linear multivariable systems with
interesting properties. Here is one of them

1 2

P(s) = s+1 s+3
1 1

s+1 s+1

Very benign subsystems (compare with example in [G&L, Ch.1]).

The transmission zeros are given by

1 1 2 1-s
det P(s) = s+1<s+1_s+3>_ (s +1)2(s+3) =0.

Difficult to control the system with gain crossover frequencies
larger than @y, = 0.5.

Analysis
Yils) = —L U 2y
1) = G e + G U2e)
Y(s) = :1)2 i)+ 5 :1)2 Us(s).

P-control of second loop Us(s) = —k2Ya(s) gives

24 25+1—Fky
(s+1)2(s2+ 25+ 1+ ko)

Yi(s) = 951(5)Us(s) = Ui(s)-

The gain kg in the second loop has a significant effect on the
dynamics in the first loop. The static gain is

1— ks

1+ky

Notice that the gain decreases with increasing ks and becomes
negative for kg > 1.

911 (0) =

RGA / Bristol’s Relative Gain

Consider the first loop u; — y; when the second loop is in
perfect control (ys = 0)

Yi(s) = p11(s)U1(s) + p12Ua(s

)
0= p21(s) Ul(S) + pa2 UZ(S).
Eliminating Us(s) from the first equation gives

Yi(s) = pu(s )p22(22;§12(s)p21(s) Ui(s).

The ratio of the static gains of loop 1 when the second loop is
open and closed is

_ P11(0)p22(0)
P11(0)p22(0) — p12(0)p21(0)”

Parameter A is called Bristol's interaction index

Interaction of Simple Loops

L— .

G 1

Yspl  —]

Process

Us
Cy 2

Ysp2  —|

-

Y1(s) = pu(s)Ui(s) + p12Us(s)
Ys(s) = pa1(s)U1(s) + pa2Us(s),
What happens when the controllers are tuned individually?

An Example

Controller C; is a PI controller with gains &£, = 1, k; = 1, and the
Cs is a proportional controller with gains k3 = 0, 0.8, and 1.6.

0 2 4 6 8 10 12 14 16 18 20

The second controller has a major impact on the first loop!

RGA / Bristol’s Relative Gain

» A simple way of measuring interaction based on static
properties

» Edgar H. Bristol, "On a new measure of interaction for
multivariable process control", [[EEE TAC 11(1967) pp. 133-135]

» ldea: What is effect of control of one loop on the steady
state gain of another loop?

» Consider one loop when the other loop is under perfect
control

Y1(s) = p11(s)U1(s) + p12Us(s)
0 = po1(s)Ui(s) + p2aUa(s).

Many Loops

Assume n inputs and n outputs. Pick an input output pair and
relabel so that the input is y1, let the remaining outputs be
yo = 0. Let the input be uy and the remaining inputs be 7.

Y1 = P11l1 + pigug |.
0 = pa1u1 + pague
Solving for y; gives

—1 P12
¥1 = (P12 — P11P31 P22) U2, reg=_———"""7 "7
(P12 — P11P37 P22)
Compare
P= [pn p12] , pl— [ “'71 . ]
P21 D22 (P12 — P11P3i P22) ™ -

The relative gain array is R = P.« P~ T



Bristol’s Relative Gain Array (RGA)

Let P(s) be an n x n matrix of transfer functions. The relative
gain array is

A = P(0).x P7T(0)
The product .x is “element-by-element product” (Schur or
Hadamard product, same notation in matlab). Properties

» (A.xB)T = AT« BT
» P diagonal or triangular gives A = I
» Not effected by diagonal scalings

Insight and use

» A measure of static interactions for square systems which
tells how the gain in one loop is influenced by perfect
feedback on all other loops

» Dimension free. Row and column sums are 1.
» Negative elements correspond to sign reversals due to
feedback of other loops

Step Respons es with Reverse Pairing

1
> Up = <1 + g)(Yrefl -1
> uy = —kgys With ky = 0, 0.8, and 1.6.

Extra: Singul ar Values

Let A be an & x n matrix whose elements are complex
variables. The singular value decompostion of the matrix is

A=ULVv*

where = denotes transpose and complex conjugation, U and V'
are unitary matrices (UU* = I and VV* = I is. The matrix ¥ is
a k x n matrix such that £;; = o; and all other elements are
zero. The elements o; are called singular values. The largest
0 = max; 0; and smallest ¢ = min; ¢ singular values are of
particular interest. The number &/ is called the condition
number. The singular values are the square roots of the
eigenvalues of A*A.

Example: A real 2 x 2 matrix can be written as

_ [cosB; —sin6; o1 O cos @y sin Oy
~ |sinf; cos6; 0 oy —sinfy cos 6y

Extra: Interaction Analysis

Consider a system with the scaled zero frequency gain

y1 0.48 090 —0.006 17
yo| = 1052 095 0.008 Ug
¥3 0.90 —-0.95 0.020 us

Relative gain array

0.7100 —0.1602 0.4501
A= 1-03557 0.7925 0.5632
0.6456 0.3677 —0.0133

Singular values: o1 = 1.6183, 02 = 1.1434 and o3 = 0.0097.
Condition number x = 166. Only two outputs can be controlled
in practice. What variables should be chosen?

Pairing

When designing complex systems loop by loop we must decide
what measurements should be used as inputs for each
controller. This is called the pairing problem. The choice can be
governed by physics but the relative gain can also be used

Consider the previous example

ro=[; 1) o= (7 7
A =P(0).xPT(0) = [_21 —21] ’

» Negative sign indicates the sign reversal found previously
» Better to use reverse pairing, i.e. let ug control y;

Summary for 2 x 2 Systems (RGA)

A =1 No interaction
A = 0 Closed loop gain u; — y; is zero. Avoid this.

0 < 4 < 1 Closed loop gain u; — y; is larger than open
loop gain.

A > 1 Closed loop gain u; — y; is smaller than open loop
gain. Interaction increases with increasing A. Very difficult
to control both loops independently if A is very large.

A < 0 The closed loop gain u; — y; has different sign than
the open loop gain. Opening or closing the second loop
has dramatic effects. The loops are counteracting each
other. Such pairings should be avoided for decentralized
control and the loops should be controlled jointly as a
multivariable system.

Extra: Singular Decomposition A = ULV*

» The columns u; of U represent the output directions

» The columns v; of V represent the input directions

» We have AV = UZ, or Av; = o;u;. An input in the direction
v; thus gives the output o;u;, i.e. in the direction u;

» Since the vectors u; and v; are of unit length the gain of A
for the input u; is o;

» The largest gain is 6 = max; o;

» There are efficient numerical algorithms svd in Matlab

» Singular values can be applied to nonsquare matrices

» A natural way to define gain for matrices A and transfer
function matrices G(s)

[lAv]] _ _ . — i
=0(A), gain = max o (G (iw
bl =@ 1ax (G (i)

gain = max
v

Extra: Interaction Analysis

We have y = U S V. How to pick two input output pairs

—0.088 —1.616 0.010
SvT =] 1142 —0.062 0.018
—0.000 0.000 0.010

—-0.571 0.377 —0.729
—0.604 0.409 0.684
0.556 0.831 —-0.007

U =

The matrix SVT shows that u; and u, are obvious choices of inputs.
As far as the outputs are concerned. We have two choices y1, y3 or
ys,ys (angles between rows). Notice that yi, v, is not a good choice
because the corresponding rows of U S are almost parallel. The
singular values are

Selection yq,ys <« u1,us Con- Selection ys,y3 <« u1,us Con-
dition number k¥ = 1.51 dition number x = 1.45

A= 0.3602 0.6398 A= 0.3662 0.6338
~ 10.6398 0.3602 ~ 10.6338 0.3662



Interactions Can be Beneficial

s—1 s
_ (pu(s) pia(s)) _ | (s+D(+2) (s+1)(s+2)
P(s) = [p21(8) pzz(S)] - -6 s—2
(s+1)(s+2) (s+1)(s+2)
The relative gain array
10
(o)

Transmission zeros

(s—1)(s—2)+6s s2 +4s+2
det P(s) = =
PE) = T 12 +27 12+ 27
Difficult to control individual loops fast because of the zero at
s = 1. Since there are no multivariable zeros in the RHP the
multivariable system can easily be controlled fast but this
system is not robust to loop breaks.

Transfer Function of Linearized Model

Transfer function from wy, us t0 y1,y2

7ic (1—72)er
1+sT 1+ sTy)(1 + sT:
P(S)Z +s1y ( +s 1)( +s 3)
(I—res YaC2
(1 +ST2)(1 +8T4) 1 +ST2

Transmission zeros

(14 sT3)(1+sTy) — A=—r)A=-7)

_ 1y
det P(s) = oy A sTo) (1 + sT3)(11 i sTy)

» Nointeraction of y; = y9 =1

» Minimum phase if 1 <y, + 5 <2

» Nonminimum phase if 0 < y; + 72 < 1.
> Intuition?

A multivariable control problem

-The water is -Now it is too hot!  -Now itis too cold! -Now it is too deep!
too cold!

| VATTNET AR
AR KALLT !

How to do if we want to separate control of
» temperature?
» water level?

¢ [%p [t P

w

D,
Find D; and D5 so that the controller sees a “diagonal plant”:
0 0
* 0
0 =

Then we can use a "decentralized" controller C with same
block-diagonal structure.

DyPD; =

S O %

The Quadruple Tank

Relative Gain Array

Zero frequency gain matrix

_ r1€e1 (1—72)er
P(0) = [(1 —71)ee Yac2 ]

The relative gain array

A 1-4
P(0) = [1_/1 A ]
where
_ Y172
Y1i+y2—1

» No interaction fory; = y9 =1
» Severe interaction if y; + 72 < 1

Decoupling

Simple idea: Find a compensator so that the system appears to
be without coupling (“block-diagonal transfer function matrix").

Many versions — here we will consider

» Input decoupling @ = PD;
» Output decoupling @ = Dy P
» “both” Q = DyPD;

but many different methods including

» Conventional (Feedforward)
» Inverse (Feedback)
» Static

Important to consider windup, manual control and mode
switches.

» Keep the decentralized philosophy

The Quadruple Tank

Transfer function

Yic1 (1=72)e1
1 T 1 T)(1 T
P(s) = + 8Ty ( +s 1)( +s 3)
(1=71)ez YaC2
(1+ST2)(1+ST4) 1+ST2

Relative gain array

R =P(0).»P(0)' = [15 151]

where
_ Y1Ye
Yitrya—1

Recall RHP zero if y; + 2 < 1. Physical interpretation!
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May be good to decouple interaction to outputs, but you should
also be careful not to waste control action to “strange

decouplings”!!
Systems with Parallel Actuation A Protot ype Example
dw
ox JE+D(0=M1+M2—ML, L
Proportional control w—[

[
@ M1 :M10+K1(a)sp—a)) F
M2 = MZO + K2(a)sp - w)

The proportional gains tell how the load is distributed

do

JE + (D + Kl + KQ)CU = MlO + M20 _ML + (K1 +K2)wsp.
A first order system with time constant 7' = JJ /(D + K1 + Kb3)

» Motor drives for papermachines and rolling mills Discuss response speed, damping and steady state

» Trains with several motors or several coupled trains

! t p P K+ K, Mo + Msy — My,
> =wy =
ower systems 0T Dt K+ Ky D+ K+ Ky
Integral Action? Power Systems - Massive Parallellism

» Edison’s experience
ox ! Two generators with

L governors having
What if we instead use » " 8 integral action

two Pl-controllers? » Many generators supply

power to the net.
Frequency control
Voltage control

WARNING!!

» Isochronous governors
(integral action) and
governors with

Prototypes for lack of controllability and observability! sp;a_ed)—drop (no integral
action

Summary

v

All real systems are coupled
Multivariable zeros - limitations
» Never forget process redesign
» Relative gain array and singular values give insight
Why decouple
Simple system.

SISO design, tuning and operation can be used
What is lost?

» Parallel systems
One integrator only!
» Next lecture: Multivariable design LQ/LQG

v

v




