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Limitations : Cont rol labi li ty [f rom lec 6]
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= 1 corresponds to what states we can reach by
∫ t1
0
pu(t)p2dt = 1.

Lecture 7: Funda mental Limitations

◮ Limitations from unstable poles and zeros: Intuition
◮ A back-wheel steered bicyle?
◮ Limitations from unstable poles and zeros: Hard proofs
◮ Bode’s integral formula
◮ Bode’s relation: Coupling magnitude and phase

See lecture notes and [G&L Ch. 7]

Unstable pol es — “i ntui tive reasoni ng”

An unstable pole pmakes the output signal for a bounded input
grow exponentially as ∼ ept. To stabilize this system, one has to
act fast, on a time scale proportional to ∼ 1/p.

Intuit ive conclusion: Unstable poles give a lower bound on
the speed of the closed loop.

Systems with time-delay

Assume that the plant contains a time-delay T . This means e.g.
that a load disturbance is not visible in the output signal until
after at least T time units. Of course, this puts a hard constraint
on how quickly a feedback controller can reject the disturbance!

Intuit ive conclusion: Time delays give an upper bound on the
speed of the closed loop.

Unstable zeros — " intui tive reasoni ng"

The step response of a system with a process zero in the right
half plane (i.e, with positive real part) goes initially in the "wrong
direction".

Intuit ive conclusion: Unstable zeros give an upper bound on
the speed of the closed loop.

Why the wrong d irection? The Laplace transform of the system
output signal G(s)U(s) will be 0 if we evaluate it at s = z where z is a
process zero. If we in particular look at the step response, call it y(t),
and its Laplace transform we get

0 = Y(z) =

∫ ∞

0

y(t) e−zt
︸︷︷︸

>0

dt

Hence, y(t) must takey both positive and negative values!

Mini -problems

1. Give examples of systems that initially respond in the
“wrong” direction.

2. Which of the intuitive arguments can be applied to
◮ an inverted pendulum?
◮ a rear wheel steered bicycle?

Bike example

A (linearized) torque balance for a bicycle can be approximated
as

J
d2θ

dt2
= m�{θ +

mV0{

b

(

V0β + a
dβ

dt

)

Bike example, cont ’d

J
d2θ

dt2
= m�{θ +

mV0{

b

(

V0β + a
dβ

dt

)

where the physical parameters have typical values as follows:

Mass: m = 70 kg

Distance rear-to-center: a = 0.3m

Height over ground: { = 1.2 m

Distance center-to-front: b = 0.7 m

Moment of inertia: J = 120 kgm2

Speed: V0 = 5 ms
−1

Acceleration of gravity: � = 9.81 ms−2

The transfer function from β to θ is

P(s) =
mV0{

b

as+ V0
Js2 −m�{
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Bike example, cont ’d

The system has an unstable pole p with time-constant

p−1 =

√

J

m�{
( 0.4 s

The closed loop system must be at least as fast as this.
Moreover, the transfer function has a zero z with

z−1 = −
a

V0
( −
0.3m

V0

For the back-wheel steered bike we have the same poles but
different sign of V0 and the zero will thus the be unstable!

An unstable pole-zero cancellation occurs for V0 ( 0.75m/s.
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◮ Limitations from unstable poles and zeros: Intuition
◮ A back-wheel steered bicyle?
◮ Limitations from unstable poles/zeros: Hard proofs
◮ Bode’s integral formula
◮ Bode’s relation: Coupling magnitude and phase

Hard limitations from uns table zeros

If the plant has an unstable zero zu, then the specification
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Hard limitations from uns table pol es

If the plant has an unstable pole pu, then the specification
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The Maximum Modul us Theorem

The proofs will be based on the following theorem:

Suppose that all poles of the rational function G(s) have
negative real part. Then

max
Re s≥0

pG(s)p = max
ω∈R

pG(iω )p

Sensitivity bounds from uns table zeros

It is easy to see that the sensitivity function must be equal to
one at a righ-half-plane zero s = zu of the transfer function:

P(zu) = 0 [ S(zu) :=
1

1+ P(zu)
︸ ︷︷ ︸

0

C(zu)
= 1

Notice that the unstable zero in the plant can not be cancelled
by an unstable pole in the controller, since this would give an
unstable transfer function C/(1+ PC) from measurement noise
to control input.

Sensitivity bounds from uns table pol es

Similarly, the complimentary sensitivity must be one at an
unstable pole pu:

P(pu) = ∞ [ T(pu) :=
P(pu)C(pu)

1+ P(pu)C(pu)
= 1

In this case, cancellation by an unstable zero in the controller
would give an unstable transfer function P/(1+ PC) from input
disturbance to plant output.

Corol lary of the Maximum Modul us Theorem

Suppose that the plant P(s) has unstable zeros zi and unstable
poles pj . Then the specifications

sup
ω
pWa(iω )S(iω )p ≤ 1 sup

ω

∣
∣
∣W
b(iω )T(iω )

∣
∣
∣ ≤ 1

are impossible to meet with a stabilizing controller unless
qWa(zi)q ≤ 1 for every unstable zero zi and qWb(pj)q ≤ 1 for
every unstable pole pj .

In particular, if Wa = (s+ a)/(2s) and Wb(s) = (s+ b)/(2b), it
is necessary that a ≤ mini zi and b ≥ max j pj . This proves the
statements on slide 12 & 13.
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◮ Limitations from unstable poles and zeros: Intuition
◮ A back-wheel steered bicyle?
◮ Limitations from unstable poles/zeros: Hard proofs
◮ Bode’s in tegral formula
◮ Bode’s relation: Coupling magnitude and phase

Bode’s Integral Formula (“The water bed effect”)

For a system with loop gain L = PC which has a relative
degree ≥ 2 and unstable poles p1, . . . , pM , the following

conservation law for the sensitivity function S =
1

1+ L
holds.

∫ +∞

0

log pS(iω )pdω = π

M∑

i=1

Re(pi)

See [G&L Theorem 7.3] for details/asumptions.

G. Stein: "Cons ervation of “di rt! ”"

Picture from Gunter Steins Bode Lecture (1985) “Respect the
unstable”. Reprint in [IEEE Control Systems Magazine (Aug 2003)]

Lecture 7: Funda mental Limitations

◮ Limitations from unstable poles and zeros: Intuition
◮ A back-wheel steered bicyle?
◮ Limitations from unstable poles/zeros: Hard proofs
◮ Bode’s integral formula
◮ Bode’s relation: Coup lin g magnitude and ph ase

Recall that the loop transfer matrix should have small norm
qP(iω )C(iω )q at high frequencies, while at low the frequencies
instead q[P(iω )C(iω )]−1q should be small.

10
0

10
1

−70

−60

−50

−40

−30

−20

−10

0

10

20

w0 w1

P(iω )C(iω )

Disturbance rejection

RobustnessM
ag

ni
tu

de

Frequency

How quickly can we make the transition from high to low gain?

Bode’s Relation — Appr oximate version

If G(s) is stable with no unstable zeros (minimum-phase), then

argG(iω 0) (
π

2

d log pG(iω )p

d logω

∣
∣
∣
∣
ω=ω0

Otherwise the argument is even smaller.

As a consequence, the decay rate of the magnitude curve must
be less than 2 at the cross-over frequency.

Bode’s Relation — Exact version

If G(s) is stable with no unstable zeros (minimum-phase), then

argG(iω 0) =
2ω 0
π

∫ ∞
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log pG(iω )p − log pG(iω 0)p

ω 2 −ω 20
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Summary: Funda mental Limitations

◮ Limitations from unstable poles and zeros: Intuition
◮ A back-wheel steered bicyle?
◮ Limitations from unstable poles/zeros: Hard proofs
◮ Bode’s integral formula
◮ Bode’s relation: Coupling magnitude and phase


