Course outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Example: Ball in the Hoop
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Can you reach 6 = /4, § = 0? Can you stay there?

Controllability

The system
%(¢) = Ax(t) + Bu(¢)

is controllable , if for every x; € R" there exists u(t),t € [0,t1],
such that x(¢1) = x; is reached from x(0) = 0.

The collection of vectors x; that can be reached in this way is
called the controllable subspace.

Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is in a
stable system to reach a certain state.

In fact, let S; = fot‘ eAtBBTeATtdt. Then, for the system
%(t) = Ax(t) + Bu(t) to reach x(t1) = x; from x(0) = 0 itis
necessary that

ty
/0 lu(t)2dt > xS 1xy

Equality is attained with

u(t) = BTeAT(‘l_”)Sl_lxl

Lecture 6

» Controllability and observability
» Multivariable zeros
» Realizations on diagonal form

Examples: Ball in a hoop
Multiple tanks

Example: Two water tanks
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X1 =—x1+u; y1=x1+us

X9 = —axg + U Y2 = axg + ug

Canyoureach y; =1,y = 2? Can you stay there?

Controllability criteria

The following statements regarding a system
%(t) = Ax(t) + Bu(¢) of order n are equivalent:

(i) The system is controllable
(i) rank [A—AI B]=nforallie C
(iii) rank [B AB...A"1B]=n

If A is exponentially stable, define the controllability Gramian

o T
S =/ eA*BBT A tdt
0

For such systems there is a fourth equivalent statement:

(iv) The controllability Gramian is non-singular

Proof

ty
0< / [T STLeAG-0B _ ()T [BT A" =081 x; — u(t)]dt
0
t1
= x{Sl_l/ eA'BBT At S1lag
0
ty rt1
—2xT syt / AOIBu(t)dt + / u()2dt
0 0
ty
=—xTS71x; + / |u(t)|?dt
0

s0 [i* [u(t)|?dt > xT Sy %, with equality attained for
u(t) = BTeA" (1= 87 1%, This completes the proof.



Computing the controllability Gramian

Example: Two water tanks

The controllability Gramian S = [;° eA’BBT¢A™'d¢ can be
computed by solving the linear system of equations

AS +SAT + BBT =0

Proof. A change of variables gives
/ " MBBTA s = / " AU B RT AR gy
h 0

Differentiating both sides with respect to 4 and inserting A = 0
gives

—BBT = AS + SAT

Example cont'd

In matlab you can solve the Lyapunov equation AS + SAT + BBT =0by 1yap

>> a=1.25 ; A=[-1 0 ; 0 -1xa ]; B=[1 ; 1] ;

>> Cs= [B A#B] , rank(Cs)
Cs =
1.0000 -1.0000
1.0000 -1.2500
ans =
2
>> S=1yap(A,B*B’)
S =
0.5000 0.4444
0.4444 0.4000
>> invS=inv(8)

invs = —1 [X1| _
162.0 -180.0 Plotof [ x-S N
-180.0 202.5 corresponds to what states we can reach by

o u(t)Pdt = 1.

Observability criteria

The following statements regarding a system x(¢) = Ax(z),
y(t) = Cx(¢) of order n are equivalent:
(i) The system is observable
(i) rank {A _Cll} =nforallle C
C
CA
(iii) rank . =n
CA.n—l

If A is exponentially stable, define the observability Gramian

0= / ATt CT Cettdt
0

For such systems there is a fourth equivalent statement:

(iv) The observability Gramian is hon-singular

Computing the observability Gramian

The observability Gramian O = [;° eA"*CT Cetdt can be
computed by solving the linear system of equations

ATO+0A+CTC=0

Proof. The result follows directly from the corresponding
formula for the controllability Gramian.
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The controllability Gramian S = / [e,at] [e,at] dt = [ ? “Tl}
o L€ € a+1  2a

is close to singular when a =~ 1. Interpretation?

Observability

The system
x(t) = Ax(2)
¥(t) = Cx(t)

is observable , if the initial state x(0) = xo € R" is uniquely
determined by the output y(¢),t € [0,#].

The collection of vectors x, that cannot be distinguished from
x = 0 is called the unobservable subspace.

Interpretation of the observability Gramian

The observability Gramian measures how difficult it is in a
stable system to distinguish two initial states from each other by
observing the output.

In fact, let 01 = [i* eA"CT CeAldt. Then, for £(t) = Ax(t), the
influence from the initial state x(0) = x( on the output
y(t) = Cx(t) satisfies

oty
/ |y(t)|2dt = xg‘leo
0

Poles and zeros

Y(s) = [C(sI —A)~'B + D] U(s)
N— —
G(s)
The points p € C where G(s) = co are called poles of G. They
are eigenvalues of A and determine stability.

The poles of G(s)~! are called zeros of G.



Poles determine stability

All poles of G(s) = C(sI — A)™1B + D are eigenvalues of A.

The matrix A can always be written on the form
A1 * eht #

A=U U™l Henceet =U Ut
0 An 0 etnt

The diagonal elements are the eigenvalues of A.

et decays exponentially if and only if Re{1;} < 0 for all k.

Pole polynomial and Zero polynomial

The following definitions can be used even when G(s) is not a
square matrix:

» The pole polynomial is the least common denominator of
all minors (sub-determinants) to G(s).

» The zero polynomial is the greatest common divisor of the
maximal minors of G(s).

When G(s) is square, the only maximal minor is det G(s).

Example: Two water tanks
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The system has a zero in the origin! At stationarity y; = ys.

Singular values - continued

Revisit example from lecture notes 2:

The largest singularvalue of a matrix A, G(A) = Gpax(A) = the
largest eigenvalue of the matrix A*A, Amqx(A*A)

Q: For frequency specifications (see prev lectures); When are
we interested in the largest amplification and when are we
interested in the smallest amplification?

Interpretation of poles and zeros

Poles:

» A pole s = a is associated with a time function x(¢) = xge®
» A pole s = a is an eigenvalue of A

Zeros:

» A zero s = a means that an input u(k) = uge® is blocked
» A zero describes how inputs and outputs couple to states

Example: Ball in the Hoop

uDy

input @ (

output 6
6+cO+ko=0

The transfer function from @ to 6 is m. The zeroins =0
makes it impossible to control the stationary position of the ball.

Plot Singular Values of G(s) Versus Frequency

»s=tf(’s) s
» G=[1/(s+1) 1; 2/(s+2) 1]
» sigma(G) ; plot singular values

% ALT. for a certain frequency:

» i=sqrt(-1)

» w=1;
» A=[1/(i*w+1) 1 ; 2/(i*w+2) 1]
»[USV]=svd(A) o s

1

The largest singular value of G(iw) = {@ i is fairly

w42
constant. This is due to the second input. The first input makes

it possible to control the difference between the two tanks, but
mainly near @ = 1 where the dynamics make a difference.

Realization on diagonal form

Consider a transfer matrix with partial fraction expansion

Gis) = Y. SCLB"A +D
i=1 i

This has the realization

p1l 0 B
x(t) = , @)+ | | u@)
0 pnl B,
¥(t) = [C Cy] x(t) + Du(?)

The rank of the matrix C; B; determines the necessary number
of columns in B; and the multiplicity of the pole p;.



Example: Realization of Multi-variable system

To find state space realization for the system
1 2
G(S) — |: sJél (s+%+3):|
(

write the transfer matrix as

i sh;ﬁz]ﬁ“ 1 Bl oo [fe o

s+2 7 s+4 s+2

This gives the realization

@] -1 0 0o 0] [x@) 11
Dbz(t) 0O -2 0 0 xg(t) 3 1 ul(t)
@B =]o 0o =3 o |w@|T|o -1 [ug(t)]
i4(t) 0 0 0 —4||m@] |-3 o

@] 1010
B;(t)}_{o 10 1] x(t)




