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1. Introduction and system representations
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3. Disturbance models
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5. Case study
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L9-L11 Controller optimization: Analytic approach
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Lecture 2: Stability and Robustness
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» Small gain theorem

Demo: "Inverted pendulum”

Stability of autonom ous systems

The autonomous system

dx
i Ax(t)

is called exponentially stable if the following equivalent
conditions hold

1. There exist constants «, f > 0 such that
|x(8)] < aeP|x(0)] fort >0

2. All eigenvalues of A are in the left half plane (LHP), that is
all eigenvalues have negative real part.

3. All roots of the polynomial det(sI — A) are in the LHP.

Stability of input -output maps

The transfer function G(s) of a continuous time system, is said
to be input-output stable (I/O-stable, or often just called
“stable”) if the following equivalent conditions hold:

» All poles of G have negative real part (G is Hurwitz stable)
» The impulse response of G decays exponentially.

Warning: There may be unstable pole-zero cancellations
(which also render the system either uncontrollable and/or
unobservable) and these may not be seen in the transfer
function!!
For discrete time systems the corresponding conditions are : a pulse transfer function
G(2) of a discrete time system

> All poles of G are inside the unit circle (G is Schur stable).

> The pulse response of G decays exponentially.
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Eigenvalues determine stability

The matrix A can always be written on the form
A1 * eht

A=U U™l Henceet=U UL
0 An 0 ot

The number A44,..., 4, are the eigenvalues of A.

¢4t decays exponentially if and only if Re{1;} < 0 for all .

Stability of feedback loops

Go

The closed loop system is input-output stable if and only if all
solutions to the equation

1+ Go(s) =0

are in the left half plane (i.e. has negative real part).



The Nyquist criterion

Sensitivity and Robustness

If Go(s) is stable, then the closed loop system [1 + Gy(s)] ! is
stable if and only if the Nyquist curve does not encircle —1

The difference between the number of unstable poles in

[1 4 Go(s)]~! and the number of unstable poles in Go(s) is
equal to the number of times the point —1 is encircled by the
Nyquist plot in the clockwise direction.
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NOTE: nyquist-plot cmd in Matlab plots for both positive and negative frequencies!

Amplitude and phase margin

» How sensitive is the closed loop system to model errors?
» How do we measure the “distance to instability”?

> Is it possible to guarantee stability for all systems within
some distance from the ideal model?

Mini-problem

Amplitude margin A,,

arg G(ivo) = ~180°, |G(iwo)] = 4

Phase margin ¢,,
|G(iw.)| =1, argG(iw.) = ¢, — 180°
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Mini-problem — Stability margins

Nyquist diagram ° Gm = nt, P = 105.47 deg (at 4142 radsec)
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Figure: Nyquist/Bode plots for the nominal transfer function %

For &£ = ¢ = 1 the open loop transfer function is
s+1  _op
s2+s+1

Phase margin = 109 - 35 rad at @ = 1.4rad/s.
A time-delay T corresponds to a phase-delay arg{e ®’} = —@T

Thus the time-delay margin is 109 - 155/1.4 ~ 1.35 sec.

How sensitive is H to changes in G?

r y
C(s) G(s)
-1
C(s)G(s)
®) =1 cEaE 1
H(s)

N F(s+1) —sT
s2+es+1

-1

Nominally £ =1, ¢ = 1 and T' = 0. How much margin is there in
each of the parameters before the system becomes unstable?

Gm = Inf, Pm =109.47 deg (at 1.4142 rad/sec)
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Mini-problem — Stability margins

Without delay (T=0):

The loop gain L = CP

Closed loop
L
Ga=177=
k(s+1)
— s24cs+1 —
k(s+1)
(1 + sz-:cs+1)
k(s+1) k(s +1)

S2tcs+1+khs+k S2ts(k+c)+ (1+Ek)

dH _d 1 c H

E‘@(l_ucc;) “(1+CG)?~ G1+CG)

Define the sensitivity function, S:

__d(logH) dH/H 1
T d(ogG) ~ dG/G ~ 1+CG

and the complementary sensitivity function 7':

. CG
T 14+CG

T:=1-S




Note that the

» complementary sensitivity function T is the transfer
function G,_,,

» sensitivity function S is the transfer function G,_,,

S+T=1
Note: there are four different transfer functions for this closed-loop system and all have
to be stable for the system to be stable!

It may be OK to use an unstable controller C
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Miniproblem

What are the gains of the following systems?

y(t) = —u(t) (a sign shift)
(a time delay)

(an integrator)

t
4. y(B) = / e y(r)dr  (afirst order filter)
0

Defini tion of vector norm

For x € R", we use the “Ly-norm”

x| = VaTax = /o + - + 22

Nyquist plot illustration

The sensitivity function measures the distance from the Nyquist
plotto —1.
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The Ly-norm of a signal

For y(t) € R" the “Lg-norm”

Iyl = 1/ / y(t)[2dt s equal to ﬁ” / |Ly(iw) [2do
0 —00

The equality is known as Parseval's formula

The Ly-gain of a system For a system § with input z and
output S(u), the Le-gain is defined as

115 (@)ll2
llelle

|51 := sup
u

The Ly-gain from frequency data

Consider a stable system § with input » and output S(z) having
the transfer function G(s). Then, the system gain

15 (@)ll2
llelle

[|S]] := sup isequalto [|G|le := sup |G (iw)|
u w

Proof. Let y = S(u). Then
2 _ i /oo )2 _ i /oo 2 V(2. N2 2 2
™ =57 = [yio)fdo =57 = |G (@) - [Lu(io)|"do < |Gl

The inequality is arbitrarily tight when u(¢) is a sinusoid near
the maximizing frequency.

Defini tion of matrix norm

For M € R"*", we use the “Lg-induced norm”

| M x| xTMTMx =
M| = —_— = " =\ /A(MTM
a1 = sup Il = sup [ Sy

Here 1(MT M) denotes the largest eigenvalue of MT M. The
fraction |M x|/|x| is maximized when x is a corresponding
eigenvector.



Different gains in different directions: [yl] = [2 4] [ul]
Vo 0 3| |ue

Inputu=[0.309 0.951]", |ul=1
\ 1

151

y=Gu=[442 285]', |yl=5.26

(red):eigenvectors ; (blue): V ; (green): U A=U*S*V

Examnple: matlab-demo

Example: Consider the transfer function matrix G (i)

2 4
_ s+1 25+ 1
G(s) = s

s2+01s+1 s+1

>> s=tf(’s’)

>> G=[ 2/(s+1) 4/(2*s+1); s/(s72+0.1xs+1) 3/(s+1)];

>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain
ans =
10.3577

Robustness

How large perturbations A(iw) can be tolerated without
instability?

1% w

F* A(iw)
G(iw) T

C(iw)

Proof

Define [lyllr = \/fy ly(¢)[%dz. Then [ISG)llz < IS - Iyl

e1 =r1+ Sa(re + S1(e1))
lellr < Irsllz + 1520 (rallz + ISl - llealiz)

Irallz + 1Sl - lIrallr
1—[1S1ll - ISl

This shows bounded gain from (r1,r2) to e;.

lleallr <

The gain to ey is bounded in the same way.

Example
Matlab-code for singular value decomposition of the >> A=[2 4 ; 03]
matrix A=
2 4 2 4
A= [o 3] 0 3
>> [U,S,V]=svd(A)
SVD: U=
A=U-S-V* 0.8416  -0.5401
where both the matrices U and V are unitary (i.e. s = 0.5401 0.8416
have orthonormal columns s.t. V*-V =1I)and S is B 5.2631 o
the diagonal matrix with (sorted decreasing) singular . o 11400
values o;. _ .
Multiplying A with a input vector along the first col- V=
umn in V gives 0.3198  -0.9475
0.9475 0.3198
AV =USV* -V = > ARVC1)

ans =
4.4296
2.8424

1
=US [0] =Ugy 01

That is, we get maximal gain o in the output direc-

>> U(:,1)*8(1,1)
ans =

minimal gain ¢, = o9 if we use the last column 4.4296

2.8424
Viem) = Vi)

tion Uy if we use an input in direction V(.1 (and

singular Values

Singular Values (abs)

10°
Frequency (rad/sec)
Figure: The singular values of the tranfer function matrix (prev slide).

Note that G(0)=[2,4 ; 0 3] which corresponds to M in the
SVD-example above. |G|l = 10.3577.

The Small Gain Theorem

r el

S2 -

Assume that $; and S are input-output stable. If
IS1]l - [1S2]l < 1, then the gain from (rq,72) to (e1, e2) in the
closed loop system is finite.

Application to robustness analysis

The transfer function from w to v is

C(io)G(iw)
1+ C(iw)G(iw)

Hence the small gain theorem guarantees stability if

uMm<Gw
(0]

‘1 f(é‘("lw )G (iw) H>
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