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The Q-parametrization (Youla)

Plant

Controller
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control inputs u

controlled variables z

measurements y

distubances w

Idea for lecture 12-14:

The choice of controller generally corresponds to finding Q(s),
to get desirable properties of the map from w to z:

z w

Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) is determined, a corresponding controller is derived.

Lecture 13: Synthesis by Convex Optimization

• Introduction to convex optimization

○ Controller optimization using Youla parametrization

○ Example — DCservo revisited

Most of this lecture is based on source material from Boyd,

Vandenberghe and coauthors. See

http://www.control.lth.se/Education/EngineeringProgram/FRTN10/multivariable-

control.html

Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• objective and constraint functions are convex:

fi(αx + βy) ≤ αfi(x) + βfi(y)

if α + β = 1, α ≥ 0, β ≥ 0

• includes least-squares problems and linear programs as special cases
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Least-squares

minimize ‖Ax − b‖2
2

solving least-squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ Rk×n); less if structured

• a mature technology

using least-squares

• least-squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear programming

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)
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solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F}, where F
is cost of evaluating fi’s and their first and second derivatives

• almost a technology

using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization
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Brief history of convex optimization

theory (convex analysis): ca1900–1970

algorithms

• 1947: simplex algorithm for linear programming (Dantzig)

• 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )

• 1970s: ellipsoid method and other subgradient methods

• 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

• late 1980s–now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications

• before 1990: mostly in operations research; few in engineering

• since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . . . ); new problem classes
(semidefinite and second-order cone programming, robust optimization)
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Definition

f : Rn → R is convex if dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1

Convex functions 3–2
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Examples on R

convex:

• affine: ax + b on R, for any a, b ∈ R

• exponential: eax, for any a ∈ R

• powers: xα on R++, for α ≥ 1 or α ≤ 0

• powers of absolute value: |x|p on R, for p ≥ 1

• negative entropy: x log x on R++

concave:

• affine: ax + b on R, for any a, b ∈ R

• powers: xα on R++, for 0 ≤ α ≤ 1

• logarithm: log x on R++

Convex functions 3–3

Examples on Rn and Rm×n

affine functions are convex and concave; all norms are convex

examples on Rn

• affine function f(x) = aTx + b

• norms: ‖x‖p = (
∑n

i=1
|xi|

p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk|

examples on Rm×n (m × n matrices)

• affine function

f(X) = tr(ATX) + b =

m
∑

i=1

n
∑

j=1

AijXij + b

• spectral (maximum singular value) norm

f(X) = ‖X‖2 = σmax(X) = (λmax(X
TX))1/2

Convex functions 3–4

Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aT
i x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex; equality constraints are affine

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)

Linear program (LP)

minimize cTx + d
subject to Gx ¹ h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P
x⋆

−c

Convex optimization problems 4–17

Quadratic program (QP)

minimize (1/2)xTPx + qTx + r
subject to Gx ¹ h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)

Convex optimization problems 4–22

Second-order cone programming

minimize fTx
subject to ‖Aix + bi‖2 ≤ cT

i x + di, i = 1, . . . ,m
Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)

Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · · + xnFn + G ¹ 0

Ax = b

with Fi, G ∈ Sk

• inequality constraint is called linear matrix inequality (LMI)

Matrix norm minimization

minimize ‖A(x)‖2 =
(

λmax(A(x)TA(x))
)1/2

where A(x) = A0 + x1A1 + · · · + xnAn (with given Ai ∈ Sp×q)

equivalent SDP

minimize t

subject to

[

tI A(x)
A(x)T tI

]

º 0

• variables x ∈ Rn, t ∈ R

• constraint follows from

‖A‖2 ≤ t ⇐⇒ ATA ¹ t2I, t ≥ 0

⇐⇒

[

tI A
AT tI

]

º 0

Convex optimization problems 4–39
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Newton’s method

given a starting point x ∈ dom f , tolerance ǫ > 0.

repeat

1. Compute the Newton step and decrement.

∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).

2. Stopping criterion. quit if λ2/2 ≤ ǫ.

3. Line search. Choose step size t by backtracking line search.

4. Update. x := x + t∆xnt.
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Barrier method for constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0 1 = 1, . . . ,m

Ax = b

approximation via logarithmic barrier

minimize f0(x) − (1/t)
∑

m

i=1
log(−fi(x))

subject to Ax = b

• an equality constrained problem

• for t > 0, −(1/t) log(−u) is a

smooth approximation of I
−

• approximation improves as t → ∞

u
−3 −2 −1 0 1
−5

0

5

10

Interior-point methods 12–4

Outline

○ Introduction to convex optimization

• Controller optimization using Youla parametrization

○ Example — DCservo revisited

Scheme for numerical optimization of Q

Given some fixed set of basis function φ0(s), . . . ,φN(s), we will

search numerically for matrices Q0, . . . ,QN such that the closed

loop transfer matrix Gzw(s) satisfies given specifications when

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s) and Q(s) =

N
∑

k=0

Qkφ k(s)

Once Q(s) has been determined, we will recover the desired

controller from the formula

C(s) =
[

I − Q(s)Pyu(s)
]−1
Q(s)

It is possible to choose the sequence φ0(s),φ1(s),φ2(s), . . . such

that every stable Q can be approximated arbitrarily well. Hence,

in principle, every convex control design problem can be solved

this way.

But, what specifications give a convex design problem?

Pulse response parameterization

We will use an intuitively simple parametrization of Q(s) where

each parameter Qk represents a point on the corresponding

impulse response in time domain.
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Mini-problem

Which specifications are convex constraints on Qk?

1. Stability of the closed loop system

2. Lower bound on step response from wi to zj at time ti

3. Upper bound on step response from wi to zj at time ti

4. Lower bound on Bode amplitude from wi to zj at frequency ω i

5. Upper bound on Bode amplitude from wi to zj at frequency ω i

6. Interval bound on Bode phase from wi to zj at frequency ω i

Lower bound on step response

0 5 10 15 20 25
0

0.5

1

1.5

2

The step response depends linearly on Qk, so every time tk
with a lower bound gives a linear constraint.

Upper bound on step response
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Every time tk with an upper bound also gives a linear constraint.
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Upper bound on Bode amplitude

Bode Magnitude Diagram
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An amplitude bound pG(iω i)p < c is a quadratic constraint.

Lower bound on Bode amplitude

Bode Magnitude Diagram
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An lower bound pG(iω i)p is a non-convex quadratic constraint.

This should be avoided in optimization.

Synthesis by convex optimization

A general control synthesis problem can be stated as a convex

optimization problem in the variables Q0, . . . ,Qm. The problem

has a quadratic objective, with linear and quadratic constraints:

Minimize
R∞
−∞ pPzw(iω ) + Pzu(iω )

Q(iω )
z }| {
X

k

Qkφk(iω ) Pyw(iω )p
2dω

o

quadratc objective

subject to
step response wi → zj is smaller than fi jk at time tk
step response wi → zj is bigger than �i jk at time tk

ff

linear constraints

Bode magnitude wi → zj is smaller than hi jk at ω k
¯

quadratic constraints

Once the variables Q0, . . . ,Qm have been optimized, the

controller is obtained as C(s) =
[

I − Q(s)Pyu(s)
]−1
Q(s)

Outline

○ Introduction to convex optimization

○ Controller optimization using Youla parametrization

• Example — DCservo revisited

Example — DC-motor
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s(s+1)C(s)
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z2w1
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The transfer matrix from (w1,w2) to (z1, z2) is

Gzw(s) =

[

P
1+PC

−PC
1+PC

1
1+PC

−C
1+PC

]

with P(s) = 20
s(s+1) . We will choose C(s) to minimize

trace

∫ ∞

−∞
Gzw(iω )Gzw(iω )

∗dω

subject time-domain bounds.

DC-servo with time domain bounds
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What if we remove the upper bound on the response to input

disturbances ?

DC-servo with time domain bounds

Input step disturbance Reference step

Step Response

Time (sec)

A
m

p
lit

u
d

e

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Step Response

Time (sec)

A
m

p
lit

u
d

e

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

The integral action in the controller is lost, just as in lecture 11!

Summary

◮ There are efficient algorithms for convex optimization, e.g.
◮ Linear programming (LP)
◮ Quadratic programming (QP)
◮ Second order cone programming (SOCP)
◮ Semi-definite programming (SDP)

◮ The Youla parametrization allows us to use these

algorithms for control synthesis

◮ Resulting controllers have high order. Order reduction will

be studies in the last lecture before course summary.


