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Controller

Idea for lecture 12-14:
The choice of controller generally corresponds to finding Q(s),
to get desirable properties of the map from w to z:

z w

| Pa(s) = Pu(s)Q(S) Py (s) [

Once Q(s) is determined, a corresponding controller is derived.

Convex optimization problem

minimize  fo(z)
subject to  fi(z) <b;, i=1,...,m

e objective and constraint functions are convex:

filax + By) < afi(x) + Bfi(y)
ifa+p8=1a>0, 08>0

e includes least-squares problems and linear programs as special cases
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Linear programming

minimize ¢’z

subject to a?:l; <b, i=1,...,m
solving linear programs
e no analytical formula for solution
o reliable and efficient algorithms and software
e computation time proportional to n?m if m > n; less with structure

e a mature technology

using linear programming
e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving ¢;- or {o-norms, piecewise-linear functions)
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Brief history of convex optimization

theory (convex analysis): cal900-1970

algorithms

e 1947: simplex algorithm for linear programming (Dantzig)

e 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )
e 1970s: ellipsoid method and other subgradient methods

e 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

e late 1980s—now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications
o before 1990: mostly in operations research; few in engineering

e since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . . . ); new problem classes
(semidefinite and second-order cone programming, robust optimization)
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Lecture 13: Synthesis by Convex Optimization

e Introduction to convex optimization
o Controller optimization using Youla parametrization

o Example — DCservo revisited

Most of this lecture is based on source material from Boyd,
Vandenberghe and coauthors. See
http://www.control.lth.se/Education/EngineeringProgram/FRTN10/multivariable-
control.html

Least-squares

minimize [|Az — b||3
solving least-squares problems
e analytical solution: z* = (ATA)~1ATY
e reliable and efficient algorithms and software

e computation time proportional to n2k (A € RF*™); less if structured

e a mature technology

using least-squares

o |east-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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solving convex optimization problems

e no analytical solution
o reliable and efficient algorithms

e computation time (roughly) proportional to max{n?®,n’m, F'}, where I/
is cost of evaluating f;'s and their first and second derivatives

e almost a technology

using convex optimization

o often difficult to recognize
e many tricks for transforming problems into convex form

e surprisingly many problems can be solved via convex optimization
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Definition
f:R"™ — Ris convex if dom f is a convex set and
f0z+ (1 =0)y) <0f(x)+ (1-0)f(y)

forall z,yedomf,0<0<1

(@, f(@))

e fis concave if —f is convex

o fis strictly convex if dom f is convex and
f0z+ (1—0)y) < 0f(x) + (1 —0)f(y)

forz,yedomf, z#y, 0<6<1
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Examples on R

convex:

e affine: az + b on R, for any a,b € R

e exponential: e*”, for any a € R

e powers: 2® on Ry, fora>1ora <0

o powers of absolute value: |z|” on R, for p > 1

e negative entropy: xlogz on Ry

concave:
e affine: ax + b on R, for any a,b € R
e powers: z*on Ry, for0<a <1

e logarithm: logz on Ry

Convex functions

Convex optimization problem
standard form convex optimization problem

minimize  fo(z)
subject to  f;(z) <0,

T
alz
o fo, fi ..., fm are convex; equality constraints are affine
e problem is quasiconvex if fy is quasiconvex (and fi, ..., fn convex)

Quadratic program (QP)

minimize  (1/2)a" Pz +q¢Tx + 7
subjectto Gx <h
Az =b
e P €S, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

Convex optimization problems

Semidefinite program (SDP)

minimize ¢z
subject to z1Fy 4+ zoFy+ - + 2, F + G <0
Ax=b

with F;, G € S*

o inequality constraint is called linear matrix inequality (LMI)

Examples on R" and R™*"

affine functions are convex and concave; all norms are convex
examples on R"
e affine function f(z) = a’x +b

o norms: [z, = (S0, [,17)1/7 for p > 1; [Jal|ow = max [z

examples on R™*™ (m x n matrices)
o affine function
FX) =tr(ATX) +b=>">" Ay Xi;+b
i=1j=1

e spectral (maximum singular value) norm

FX) = 1Xl2 = omax(X) = Aumax(X7X))1/?
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Linear program (LP)

minimize ¢’z +d
subject to Gz < h
Az =0
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron
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Second-order cone programming

minimize Tz
subject to  [[Aix +billa < cfx+d;, i=1,...,m
Fr=g

(A; € R"¥™ F € RPX™)

Matrix norm minimization

minimize [[A(@)]|2 = (Amax(A(x)T A(2))) "
where A(z) = Ao + 2141 + - - + 2, Ay, (with given 4; € SP*9)
equivalent SDP

minimize ¢
subject to [ ti Alx) ] =0
e variables z € R", t € R

e constraint follows from

Al <t < ATA<$I, t>0
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Newton’s method

given a starting point x € dom f, tolerance € > 0.
repeat
1. Compute the Newton step and decrement.
Azy = =V f(2)"'Vf(z); A= V@) V() ' V().
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. © := = + tAwy.

Outline

o Introduction to convex optimization
o Controller optimization using Youla parametrization

o Example — DCservo revisited

Pulse response parameterization

We will use an intuitively simple parametrization of @(s) where
each parameter @}, represents a point on the corresponding
impulse response in time domain.
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The step response depends linearly on @, so every time ¢,
with a lower bound gives a linear constraint.

Barrier method for constrained minimization

minimize  fo(x)
subjectto fi(x) <0 1=1,....m
Ax=1b

approximation via logarithmic barrier

minimize  fo(z) — (1/¢) 327, log(— fi(x))
subject to Ax =1b

10
e an equality constrained problem

o fort >0, —(1/t)log(—u)is a
smooth approximation of I_

e approximation improves as t — 0o

Interior-point methods

Scheme for numerical optimization of @

Given some fixed set of basis function ¢ (s), ..., dn(s), we will
search numerically for matrices @y, ..., @ such that the closed
loop transfer matrix G, (s) satisfies given specifications when

N
sz(s) = Pzw(s) - qu(S)Q(S)wa(S) and Q(S) = Z Qk¢k(s)
k=0

Once Q(s) has been determined, we will recover the desired
controller from the formula

C(s) = [I - Q(s)Pyu(s)] ' Q(s)

It is possible to choose the sequence ¢¢(s), #1(s), d2(s), . .. such
that every stable @ can be approximated arbitrarily well. Hence,
in principle, every convex control design problem can be solved
this way.

But, what specifications give a convex design problem?

Mini-problem

Which specifications are convex constraints on @?

1. Stability of the closed loop system

. Lower bound on step response from w; to z; at time ¢;

. Upper bound on step response from w; to z; at time ¢;

Lower bound on Bode amplitude from w; to z; at frequency w;

Upper bound on Bode amplitude from w; to z; at frequency o;

SINC RN

Interval bound on Bode phase from w; to z; at frequency o;

Upper bound on step response
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Every time ¢; with an upper bound also gives a linear constraint.



Upper bound on Bode amplitude

Bode Magnitude Diagram

An amplitude bound |G (iw;)| < c is a quadratic constraint.

Synthesis by convex optimization

A general control synthesis problem can be stated as a convex

optimization problem in the variables @y, ..., ®,. The problem

has a quadratic objective, with linear and quadratic constraints:
Qi)

Minimize 7 | Pz (i@) + Py (io) Z Qror(i®) Py (i) 2 do } quadratc objective
k

step response w; — z; is smaller than f;;; at time ¢,

subject o gioh response w; — 2; is bigger than g;;, at time t;,

} linear constraints

Bode magnitude w; — z; is smaller than h;j;, at o, } quadratic constraints

Once the variables Qo, ..., @, have been optimized, the
controller is obtained as C(s) = [ — Q(s) Py (s)] ' Q(s)

Example — DC-motor

wli TZz
FC(S) O SEs) “
1 e ?ﬁwz

=

The transfer matrix from (w1, ws) to (21, 22) is

P —PC
sz(s) _ [1+PC 1+PC:|

1 _=C_
1+PC 1+PC

with P(s) = 2. We will choose C(s) to minimize
trace/ G (i0)Gy (i) dw

subject time-domain bounds.

DC-servo with time domain bounds

Input step disturbance Reference step

Step Respionse. Step Response

Tmewes . Tmea )

The integral action in the controller is lost, just as in lecture 11!

Lower bound on Bode amplitude

—— G.(iw)

10° Gy (ia))

Magnitude (abs)

10° 10'

Frequency (radisec)

An lower bound |G (iw;)| is a non-convex quadratic constraint.
This should be avoided in optimization.
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o Introduction to convex optimization
o Controller optimization using Youla parametrization

¢ Example — DCservo revisited

DC-servo with time domain bounds

Input step disturbance Reference step

ggggggg
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What if we remove the upper bound on the response to input
disturbances ?

Summary

» There are efficient algorithms for convex optimization, e.g.
» Linear programming (LP)
» Quadratic programming (QP)
» Second order cone programming (SOCP)
» Semi-definite programming (SDP)
» The Youla parametrization allows us to use these
algorithms for control synthesis

» Resulting controllers have high order. Order reduction will
be studies in the last lecture before course summary.



