Lecture 12: Internal Model Control

» Youla Parametrization
» Internal Model Control
» Dead Time Compensation

Section 8.4 in Glad/Ljung.

The Youla Parametrization
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The closed loop transfer matrix from w to z is
Gay(8) = Paw(s) — Pau(s)Q(5) Py (s)
where
Q(s) = C(s)[I + Pru(s)C(s)] "
C(s) = Q(s) + Q(s)Pyu(s)C(s)
C(s) = [1- Q(5)Pu(s)] ' Q)

Closed loop stability for unstable plants

In case Py(s) is unstable, let Cy(s) be a stabilizing controller.
Then the previous argument can be applied with P,,,, P,, and

Py, representing the stabilized closed loop system.

Example — DC-motor
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The transfer matrix from (w1, w2) 10 (21, 22) is
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where P(s) = %. How should we choose stable P,,,, P,

Py, and Q to get

sz(s) = Pzw(s) — Py (S)Q(S)wa (s) ?

The @-parametrization (Youla)

controlled variables z distubances w

Plant

measurements y control inputs u
Controller

Idea for lecture 12-14:
The choice of controller generally corresponds to finding Q(s),
to get desirable properties of the map from w to z:

2 w
< Pa(s) — Pau(s)Q(s)Pyu(s) [

Once Q(s) is determined, a corresponding controller is found.

Closed loop stability for stable plants

Suppose the original plant P is stable. Then

» Stabilty of Q(s) implies stability of P,,(s) — P.u(s)Q(s)Pyu(s)

> fQ = C[I+PWCT1 is unstable, then small measurement
errors gives unbounded input errors.

Next lecture: Synthesis by convex optimization

A general control synthesis problem can be stated as a convex
optimization problem in the variable Q(s). The problem could
have a quadratic objective, with linear/quadratic constraints:

Q(io)
e e
Minimize [, |Pay(io) + P (i©) Y Qo (i) Pyy(io)Pdo } quadratic objective
k

step response w; — z; is smaller than f;;;, at time ¢,

subject to step response w; — z; is bigger than g;j;, at time ¢,

} linear constraints

Bode magnitude w; — z; is smaller than h;;, at @y, } quadratic constraints

Once the variables Qy, ..., @, have been optimized, the
controller is obtained as C(s) = [I — Q(s)Py.(s)]  Q(s)

Stabilizing nominal feedback for DC-motor
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The plant P(s) = 2y is not stable, so write

C(s) = Co(s) + Ci(s)

where Cy(s) = 1 is a stabilizing controller.



Redraw diagram for DC motor example
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y=Pwi+ws+Plu—y) = y=Pwi+(1—P)ws+Pu
21 =y — Wy = z1=Pw;— Pwy+ P
zo=witu=wi—y+u = zg=(1-P)(wi—ws+u)

where P, = (1+ P)™'P = 22 is stable.

Internal Model Control

Plant

Feedback is used only as the real process deviates from P(s).

The transfer function Q(s) defines how the desired input
depends on the reference signal.

When P = Py, the transfer function from r to y is P(s)Q(s).

Internal Model Control — Strictly proper plants

When P = Py, the transfer function from r to y is P(s)Q(s).

Hence, ideally, one would like to put @(s) = P(s)~ . For several
reasons this is not possible for accurate process models:

» If P(s) is strictly proper, the inverse would have more zeros
than poles. Alternatively, one could choose

Q) = P

where n is large enough to make @ proper. The parameter
A influences the speed of control.

Example 1 — First order plant model
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Two equivalent diagrams

Internal Model Control — Zeros and delays
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Once again, ideally, one would like to put @(s) = P(s)™1.

Here are other reasons why this is often not possible:

» If P(s) has unstable zeros, the inverse would be unstable.
Alternatively, one could either remove every unstable factor
(—pBs + 1) from the plant numerator before inverting, or
replace it by (Bs + 1). With the latter alternative, only the
phase is modified, not the amplitude function.

» If P(s) includes a time delay, its inverse would have to
predict the future. Instead, the time delay is removed
before inverting.

Example 2 — Non-minimum phase plant
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Dead Time Compensation

Controller

Idea: Make an internal model of the process (with and without
the delay) in the controller. Ideally Y and Y7 cancel each other
and use feedback from Ys "without delay".

Youla parametrization revisited

Dead Time Compensation

The Youla-parametrization:
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where C,,,, stabilizes the [P,C]-system and
Q(z) is any stable transfer function.

Summary of Internal Model Control

Consider the plant model
P(s) = Py(s)e™™"

Let Cp = Q/(1 — QP1) be the controller we would have used
without delays. Then @ = Cy/(1 + CoP4).

The rule of thumb tell us to use the same @ also for systems
with delays. This gives

Cls) = Q(s) _ Co/(1 + CoPr)
11— Q(s)Pl(s)e*” T 1- e*STPlCO/(l + C()Pl)
Cls) = Co(s)

T 14+ (1—e7)Co(s)Pi(s)

This modification of the Cy(s) to account for time delays is
known as dead time compensation according to Otto Smith.

Example: Dead Time Compensation

Otto Smith compensator (thick) and standard PI controller (thin)
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Nominal Controller

Linear system with observer
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In equations
% =A% + Bu(k) + Ke(k)

u=r—L%

e=y—Cz%

> Q(s) can be designed by hand for simple plants
» Ideas applicable also to multivariable plants

» Warning:
Cancellation of slow poles gives poor disturbance rejection




