Course outline

Lecture 6

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Example: Ball in the Hoop

» Controllability and observability
» Multivariable zeros
» Realizations on diagonal form

Examples: Ballin a hoop
Multiple tanks

Example: Two water tanks
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Can you reach § = 7 /4, 6 = 0? Can you stay there?

Controllability and pole-placement

Process
Closed-loop system
% =Ax+ Bu )
y=Cx %= (A—BL)x+ Blr
y=Cx
State-feedback control
u=—Lx+1r
r 1. “ x=Ax+ Bu y=Cx
X
—L

If the system (A, B) is controllable we can find a state feedback gain vector L

to place the poles of the closed loop system where we want
(= eigenvalues of (A— BL) ).

Controllability

The system
x(t) = Ax(t) + Bu(z)

is controllable , if for every x; € R” there exists u(¢),t € [0, ¢1],
such that x(¢;) = x; is reached from x(0) = 0.

The collection of vectors x; that can be reached in this way is
called the controllable subspace.
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Canyoureach y; = 1,y = 27 Can you stay there?

Observer and observability

Process Observer
dx dj:Aﬁ+Bu+K(y—5/)
{ i Ax + Bu dt ~ . ,
'copy’ correction
y=Cx §=0s

Estimation/Observer error & = x — &
Evolution with time:
P=x—3
=Ax + Bu— A% — Bu — K(Cx— C%&)
=(A-KQC)x

If the system (A, C) is observable we can find an observer gain vector K
which assigns desired eigenvalues for (A — KC).

Controllability criteria

The following statements regarding a system
x(t) = Ax(¢) + Bu(¢) of order n are equivalent:

(i) The system is controllable
(i) rank [A—AI B]l=nforallle C
(iii) rank [B AB...A" 'B]=n

If A is exponentially stable, define the controllability Gramian

S = / AtBBT Ay
0

For such systems there is a fourth equivalent statement:

(iv) The controllability Gramian is non-singular



Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is in a
stable system to reach a certain state.

In fact, let S; = jgl eAtBBTeA™tdt. Then, for the system
%(t) = Ax(t) + Bu(t) to reach x(t1) = x; from x(0) = 0 itis
necessary that

1
/ lu(t)2dt > xT ST 1x;
0
Equality is attained with

u(t) = BTeAT(“*t)Sflxl

Computing the controllability Gramian

The controllability Gramian S = [° eA’BBTeA"tdt can be
computed by solving the linear system of equations

AS+SAT + BBT =0

Proof. A change of variables gives

/oo A'BBT At = /oo AR g BT AT (t=1) gy
n 0

Differentiating both sides with respect to 4 and inserting h = 0
gives

—BBT = AS + SAT

Example cont’d

In matlab you can solve the Lyapunov equation AS + SAT + BBT =0by 1yap

>> a=1.25 ; A=[-1 0 ; 0 -1*xa ]; B=[1 ; 1] ;

>> Cs= [B A*B] , rank(Cs)
Cs =
1.0000 -1.0000
1.0000 -1.2500
ans =
2
>> S=1yap(A,B*B’)
S =
0.5000 0.4444
0.4444 0.4000
>> invS=inv(S)

invS = 1 | X| _
162.0 -180.0 Plotof [x1 x2]-S xz] =1
-180.0 202.5 corresponds to what states we can reach by
o u(t)[Pdt = 1.

Observability criteria

The following statements regarding a system x(¢) = Ax(¢),
y(t) = Cx(t) of order n are equivalent:

(i) The system is observable
(i) rank {A _C}J
C

CA
(i) rank . =n

}:nforalllec

cAmt

If A is exponentially stable, define the observability Gramian

0= / eA'teT cetdt
0

For such systems there is a fourth equivalent statement:

(iv) The observability Gramian is non-singular

Proof

ty
0< / [T S1eAB-0B _u()T)[BT A" =08 x; — u(t)|dt
0
"ty
=77t / A'BBT A dt S7xy
0
t t
—2x{S;1/ eA(tl’t)Bu(t)dt-i-/ u(t)|?dt
0 0
t1
= —xTs7Tlx; +/ [u(?)de
0

50 [ |u(t)[2dt > «T ST 1%, with equality attained for
u(t) = BT A" (1=087 1%, This completes the proof.

Example: Two water tanks
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is close to singular when a ~ 1. Interpretation?

Observability
The system
x(t) = Ax(t)
¥(t) = Cx(t)

is observable , if the initial state x(0) = xo € R" is uniquely
determined by the output y(¢),t € [0,#1].

The collection of vectors x( that cannot be distinguished from
x = 0 is called the unobservable subspace.

Interpretation of the observability Gramian

The observability Gramian measures how difficult it is in a
stable system to distinguish two initial states from each other by
observing the output.

In fact, let 01 = [i* eA"*CT CeAldt. Then, for #(t) = Ax(t), the
influence from the initial state x(0) = x( on the output
y(t) = Cx(t) satisfies

t1
| btode = 5 0sxo
0



Computing the observability Gramian

The observability Gramian O = [;° eA"*CT CeAtdt can be
computed by solving the linear system of equations

ATO+0A+CTC =0

Proof. The result follows directly from the corresponding
formula for the controllability Gramian.

Poles determine stability

All poles of G(s) = C(sI — A)~'B + D are eigenvalues of A.
The matrix A can always be written on the form
A1 % et %

A=U U™'. Hencee=U Ut
0 An 0 et

The diagonal elements are the eigenvalues of A.
et decays exponentially if and only if Re{1;} < 0 for all &.

Pole polynomial and Zero polynomial

The following definitions can be used even when G(s) is not a
square matrix:

» The pole polynomial is the least common denominator of
all minors (sub-determinants) to G(s).

» The zero polynomial is the greatest common divisor of the
maximal minors of G(s).

When G(s) is square, the only maximal minor is det G(s).

Example: Two water tanks
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The system has a zero in the origin! At stationarity y; = ys.

Poles and zeros

Y(s) = [C(sI —A)™'B + D] U(s)
~—_— —
G(s)
The points p € C where G(s) = oo are called poles of G. They

are eigenvalues of A and determine stability.

The poles of G(s)~! are called zeros of G-

Interpretation of poles and zeros

Poles:

» A pole s = a is associated with a time function x(¢) = xpe®
» Apole s = ais an eigenvalue of A

Zeros:

» A zero s = a means that an input u(k) = ue* is blocked
» A zero describes how inputs and outputs couple to states

Example: Ball in the Hoop

input @ (

output 68
O+cO+k0=0

The transfer function from w to 6 is m. The zeroins =0
makes it impossible to control the stationary position of the ball.

Plot Singular Values of G(s) Versus Frequency

»s=tf'shy e
» G=[1/(s+1) 1; 2/(s+2) 1]
» sigma(G) ; plot singular values

% ALT. for a certain frequency:

» i=sqrt(-1)

» w=1;
» A=[1/(i*"w+1) 1; 2/(i*w+2) 1]
» [U,S,V] = SVd(A) Froquency (radisec)

1
The largest singular value of G(iw) = |t i is fairly

i0+2
constant. This is due to the second input. The first input makes

it possible to control the difference between the two tanks, but
mainly near @ = 1 where the dynamics make a difference.




Singular values - continued

Revisit example from lecture notes 2:

The largest singularvalue of a matrix A, 6(A) = Omax(A) = the

largest eigenvalue of the matrix A*A, Apqx(A*A)

Q: For frequency specifications (see prev lectures); When are
we interested in the largest amplification and when are we
interested in the smallest amplification?

Example: Realization of Multi-variable system

To find state space realization for the system

write the transfer matrix as

Realization on diagonal form

Consider a transfer matrix with partial fraction expansion

n

Gis) = Y. GB | p

S —n:
=1 bi

This has the realization

Pll 0 B1
x(t) = x(t) + u(t)
0 pnl Bn
y(t) = [Cl Cn] x(t) + Du(t)

The rank of the matrix C;B; determines the necessary number
of columns in B; and the multiplicity of the pole p;.

e s Bl o o s [o o

©@®] -1 0 0 07 [x() 11

3252(1‘) _ 0 —2 0 0 xz(t) 3 1 u1(t)
B =]o 0o =3 o |m@|T|o -1 [ug(t)
i4() 0 0 0 —4||x(®)| |-3 o

w@®] 1010

{y;(t)}_[o 10 1} x(t)

s+1 s+2 s+3 s+4




