Lecture 2:

Todays lecture: Stability and Robustness

» Stability
» Robustness and sensitivity
» Small gain theorem

Demo: "Inverted pendulum”

Stability is crucial

Yesterdays lecture

» Introduction/examples
> Overview of course
> Review linear systems

» Review of
time-domain
models

» Review of
frequency-
domain
models

» Norm of signals

» Gain of systems

Stability of autonomous systems

» bicycle

» JAS 39 Gripen

» Mercedes A-class
» ABS brakes

Stability of input-output maps

The transfer function G(s) of a continuous time system, is said
to be input-output stable (I/O-stable, or often just called
“stable”) if the following equivalent conditions hold:

» All poles of G have negative real part (G is Hurwitz stable)
» The impulse response of G decays exponentially.

Warning: There may be unstable pole-zero cancellations
(which also render the system either uncontrollable and/or
unobservable) and these may not be seen in the transfer
function!!
For discrete time systems the corresponding conditions are : a pulse transfer function
G(z) of a discrete time system

» All poles of G are inside the unit circle (G is Schur stable).

» The pulse response of G decays exponentially.

The Nyquist criterion

If Go(s) is stable, then the closed loop system [1 + Go(s)] ! is
stable if and only if the Nyquist curve does not encircle —1

The difference between the number of unstable poles in
[1+ Go(s)]~! and the number of unstable poles in Gy(s) is
equal to the number of times the point —1 is encircled by the
Nyquist plot in the clockwise direction.
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NOTE: nyquist-plot cmd in Matlab plots for both positive and negative frequencies!

The autonomous system

dx
i Ax(t)

is called exponentially stable if the following equivalent
conditions hold

1. There exist constants «, f > 0 such that
lx(8)] < aeP|x(0)] fort>0

2. All eigenvalues of A are in the left half plane (LHP), that is
all eigenvalues have negative real part.

3. All roots of the polynomial det(sI — A) are in the LHP.

Stability of feedback loops

Go

The closed loop system is input-output stable if and only if all
solutions to the equation

1+ Go(s) =0

are in the left half plane (i.e. has negative real part).

Issues of Robustness

» How do we measure the “distance to instability”?
» How sensitive is the closed loop system to model errors?

» Is it possible to guarantee stability for all systems within
some distance from the ideal model?



Amplitude and phase margin

Amplitude margin A,,
. o . 1
arg G(iwg) = —180°, |G(iwo)| = .

Phase margin ¢,

|G(iw.)| = 1, arg G(io.) = ¢ — 180°

Gain curve
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How sensitive is H to changes in G?
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Note that the

» complementary sensitivity function 7' is the transfer
function G,_,,

» sensitivity function S is the transfer function G,

S+T=1
Note: there are four different transfer functions for this closed-loop system and all have
to be stable for the system to be stable!

It may be OK to use an unstable controller C

Definition of vector norm

For x € R", we use the “Lg-norm”

|| = VaTx = /22 + - + a2

Mini-problem
~ k(s+1) _sT
s2+cs+1 €
-1

Nominally 2 =1, ¢ = 1and T' = 0. How much margin is there in
each of the parameters before the system becomes unstable?

dH _d (1 \__Cc ___H
dG ~ dG 1+CG) " (1+CG? GA+CG)

Define the sensitivity function, S:

_d(ogH) dH/H 1
T d(ogG) ~ dG/G ~ 1+CG

and the complementary sensitivity function T':

. CG
T 1+CG

T:=1-8

Nyquist plot illustration

The sensitivity function measures the distance from the Nyquist
plotto —1.

R = sup 1+C(ii))G(m))
Im
SR .
C(iw)G(iw)

Definition of matrix norm

For M € R**", we use the “Lq-induced norm”

__ [Mx| fTMTMx
101 5= sup B0 — sup  [ZREME gy

Here 1(MT M) denotes the largest eigenvalue of MT M. The
fraction |M x|/|x| is maximized when x is a corresponding
eigenvector.



Different gains in different directions: [yl] = [2 4] [ul]
Yo 0 3] |ue

Input u=[0.309  0.951]", ul=1
i

y=Gu=[4.42 285]", |y]-5.26

(red):eigenvectors ; (blue): V ; (green): U A=US*V

Example: matlab-demo

Example: Consider the transfer function matrix G (iw)

2 4
— +1 2541
G(s) = ss S

s2+01s+1 s+1

>> s=tf(’s’)
>> G=[ 2/(s+1) 4/(2xs+1); s/(s72+0.1%s+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain
ans =
10.3577

Perturbations

Example
Matlab-code for singular value decomposition of the
matrix
2 4
a=[s ]
SVD :
A=U-S.V*

where both the matrices U and V are unitary (i.e.
have orthonormal columns s.t. V* .V =1I)and S'is
the diagonal matrix with (sorted decreasing) singular
values o;.

Multiplying A with a input vector along the first col-
umn in V gives

AV =USV" V) =
1
=US [0} =U(y 01
That is, we get maximal gain o in the output direc-
tion U,y if we use an input in direction V. ;) (and

minimal gain ¢, = oy if we use the last column
Vi) = Vi)

Singular Values

>> A=[2 4 ; 0 3]
A=
2 4
0 3
>> [U,S,V]=svd(Aa)
U=
0.8416 -0.5401
0.5401 0.8416
S =
5.2631 0
0 1.1400
vV =
0.3198 -0.9475
0.9475 0.3198
>> AxV(:,1)
ans =
4.4296
2.8424

>> U(:,1)*S(1,1)
ans =
4.4296
2.8424

Singular Valuo (abs: 1.1
ey

Singular Values (abs)
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How large perturbations A(i@) can be tolerated without
instability?
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Proof

Define [lyllz = \/ fy ly(t)2dz. Then [SG)liz < ISII- Ilr-

e1 =r1+ Sa(re + S1(e1))
lellr < Irsllz + 1820 (rallz + I5all - llelr)

7 1llz + 152l - lIrallr

lleillr <
1— ISl - 1Sl

This shows bounded gain from (r1,r2) to e;.

The gain to eg is bounded in the same way.

Figure: The singular values of the tranfer function matrix (prev slide).
Note that G(0)=[2,4 ; 0 3] which corresponds to M in the
SVD-example above. |G|l = 10.3577.

The Small Gain Theorem

r el

So -

Assume that $; and Sy are input-output stable. If
[IS1]] - [IS2]l < 1, then the gain from (r1,r32) to (e1, e2) in the
closed loop system is finite.

Application to robustness analysis
Aot}
G(iw)

C(io)

The transfer function from w to v is
C(io)G(iw)
1+ C(iw)G(iw)
Hence the small gain theorem guarantees stability if

rrctmatel)

A
lAlloo < (sgp 1+ Clio)




Summary

Stability and gain
Small gain theorem
Robustness
Sensitivity

vV v v Y

Poles determine stability

All poles of G(s) = C(sI — A)~'B + D are eigenvalues of A.
The matrix A can always be written on the form
A1 % et %
A=U U™'. Henceet=U U}
0 An 0 ehnt

The diagonal elements are the eigenvalues of A.
et decays exponentially if and only if Re{1;} < 0 for all &.

Poles and zeros

Y(s) = [C(sI —A)"'B + D] U(s)
~—_— —
G(s)
The points p € C where G(s) = oo are called poles of G. They
are eigenvalues of A and determine stability.

The poles of G(s)~! are called zeros of G-




