
Lecture 8

Decentralized control 1

There is a clear trend in modern engineering toward systems of higher and higher

complexity. One reason is that demands for efficiency give tighter interconnections

between subsystems. For example, to get minimally pollutive emissions in the

exhaust gas of a car, it is necessary that engine, carburettor, catalyst, gearbox, etc.

all cooperate in an optimal manner. Similarly, the demand for efficient production

and distribution of electrical power has led to tighter coupling between production

units in different geographical regions and more complex large scale dynamics.

A system with several inputs and several outputs is sometimes called a MIMO

(Multiple-Input-Multiple-Output) system. Control theory for such systems is a
highly active research area and a review of the available methods is outside the

scope of this course. However, many of the ideas that were developed for scalar

systems can be easily adapted also to a multivariable setting. This lecture will

present a few such items:

• Multivariable performance specifications

• Limitations due to unstable multivariable zeros

• Decentralized control by pairing of signals

Figure 8.1 A modern car, a power plant and an oil refinery all make extensive use of

multivariable control systems

8.1 Multivariable specifications

Consider again the feedback loop illustrated in Figure 8.2 but assume that all

signals are vector valued. Then P(s), F(s) and C(s) are matrices, so the closed
loop transfer functions need to be derived with some more care:

X (s) = PCF ⋅ R(s) + P ⋅ D(s) − PC ⋅ [N + X ](s)

[I + PC]X (s) = PCF ⋅ R(s) + P ⋅ D(s) − PC ⋅ N(s)

X (s) = [I + PC]−1PCF ⋅ R(s) + [I + PC]−1P ⋅ D(s) − [I + PC]−1PC ⋅ N(s)

1Written by A. Rantzer. The examples come from the book by Glad and Ljung, Control Theory —

Multivariable and Nonlinear Methods, Taylor & Francis, 2000
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where a dot denotes matrix-vector multiplication.

Similarly

V (s) = [I + CP]−1CF ⋅ R(s) − [I + CP]−1C ⋅ N(s) + [I + CP]−1 ⋅ D(s)

Notice that S = [I + PC]−1 is generally not the same as [I + CP]−1. The first is
called the sensitivity function and has a matrix size determined by the number

of outputs. The second is called input sensitivity function and its size corresponds

to the number of inputs. The convention is to call T = [I + PC]−1PC the comple-
mentary sensitivity function. Notice the following identities:

[I + PC]−1P = P[I + CP]−1

C[I + PC]−1 = [I + CP]−1C

T = P[I + CP]−1C = PC[I + PC]−1

S + T = I

The first equality follows by multiplication with I+CP from the right and I+PC
from the left. The second one is analogous. Using the first two equalities, we

immediately get the third. The last one is straight from definitions as well.

Also for multivariable systems, it is common to require S to be small at low

frequencies and T to be small at high frequencies. The first specification means

that y follows Fr well at small frequencies, while the second means that high

frequency measurement noise n does not influence x significantly. Another way

to state these requirements is to say that the loop transfer matrix

P(iω )C(iω )

should have small norm qP(iω )C(iω )q at high frequencies, while at low the fre-
quencies instead q[P(iω )C(iω )]−1q should be small. See Figure 8.3.

8.2 Limitations due to unstable zeros

Just like for scalar systems, there are fundamental limitations on the achievable

performance in a multivariable system. For a multivariable system with square

tranfer matrix P(s), i.e. the same number of inputs and outputs, the zeros can be
defined as the poles of P(s)−1. The following theorem captures the influence of an
unstable zero:

THEOREM 8.1

Let WS(s) be stable and let S(s) = [I + P(s)C(s)]
−1 be the sensitivity function of

a stable closed loop system. Then, the specification

qWSSq∞ ≤ 1

is impossible to satisfy unless qWS(z)q ≤ 1 for every unstable zero z of P(s).
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Figure 8.3 Specifications on the singular values of the loop transfer function often have

this form. A lower bound on the singular values for low frequencies is needed for disturbance

rejection. This means that q[P(iω )C(iω )]−1q should be small. An upper bound on the singular
values for high frequencies, making qP(iω )C(iω )q small enough, is needed for robustness to
model errors and measurement noise.

The proof is analogous to the result for scalar systems in Lecture 4. Instead of

giving the details, we turn our attention to an example.

Example 1 (Non-minimum phase MIMO System) Consider a feedback system
y= (I + PC)−1r with the multivariable process

P(s) =






2

s+ 1

3

s+ 2
1

s+ 1

1

s+ 1






Computing the determinant by hand

det P(s) =
2

(s+ 1)2
−

3

(s+ 2)(s+ 1)
=

−s+ 1

(s+ 1)2(s+ 2)

shows that the process has an unstable zero at s = 1, which will limit the achiev-
able performance. For further understanding of the limitation, consider the fol-

lowing three different control structures:

Controller 1 The controller

C1(s) =







K1(s+ 1)

s
−
3K2(s+ 0.5)

s(s+ 2)

−
K1(s+ 1)

s

2K2(s+ 0.5)

s(s+ 1)







gives the diagonal loop transfer matrix

P(s)C1(s) =







K1(−s+ 1)

s(s+ 2)
0

0
K2(s+ 0.5)(−s+ 1)

s(s+ 1)(s+ 2)







Hence the system is decoupled into to scalar loops, each with an unstable zero

at s = 1 that limits the bandwidth. The closed loop step responses are shown in
Figure 8.4.
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Figure 8.4 Closed loop step responses with decoupling controller C1(s) for the two outputs
y1 (solid) and y2 (dashed). The upper plot is for a reference step for y1. The lower plot is for
a reference step for y2.

Controller 2 The controller

C2(s) =






K1(s+ 1)

s
K2

−
K1(s+ 1)

s
K2






gives the upper triangular loop transfer matrix

P(s)C2(s) =







K1(−s+ 1)

s(s+ 2)

K2(5s+ 7)

(s+ 2)(s+ 1)

0
2K2

s+ 1







Now the decoupling is only partial: Output y2 is not affected by r1. Moreover,

there is no unstable zero that limits the rate of response in y2! The closed loop

step responses for K1 = 1, K2 = 10 are shown in Figure 8.5.

Controller 3 The controller

C3(s) =







K1
−K2(s+ 0.5)

s(s+ 2)

K1
2K2(s+ 0.5)

s(s+ 1)







gives the lower triangular loop transfer matrix

P(s)C3(s) =







K1(5s+ 7)

(s+ 1)(s+ 2)
0

2K1

s+ 1

K2(−1+ s)(s+ 0.5)

s(s+ 1)2(s+ 2)







In this case y1 is decoupled from r2 and can respond arbitrarily fast for high values

of K1, at the expense of bad behavior in y2. Step responses for K1 = 10, K2 = −1
are shown in Figure 8.6.

To summarize, the example shows that even though a multivariable unstable

zero always gives a performance limitation, it is possible to influence where the

effects should show up. 2
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8.3 Pairing of signals
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Figure 8.5 Closed loop step responses with controller C2(s) for the two outputs y1 (solid)
and y2 (dashed). The right half plane zero does not prevent a fast y2-response to r2 but at the
price of a simultaneous undesired response in y1.
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Figure 8.6 Closed loop step responses with controller C3(s) for the two outputs y1 (solid)
and y2 (dashed). The right half plane zero does not prevent a fast y1-response to r1 but at the
price of a simultaneous undesired response in y2.

8.3 Pairing of signals

The simplest way to deal with a multivariable control problem is to select an equal

number of inputs and outputs and make a pairing, so that each input is responsible

for control of one particular output. The corresponding transfer function from input

to output of the process is determined for each pair, and the scalar feedback loops

are designed ignoring the coupling between the loops inside the plant.

When connecting all the feedback loops simultaneously, the cross-coupling may

potentially lead to performance degradation or even instability. The approach

therefore works much better if there is a good way to select input and output

variables for the scalar loops. One way to do this is to use the Relative Gain Array
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Lecture 8. Decentralized control 1

(RGA) that will be studied next.
For an full rank matrix A ∈ Cm$n, define the Relative Gain Array as

RGA(A) := A. ∗ (A−1)T

where “.*” denotes element-by-element multiplication. For non-square matrices,

the inverse A−1 is replaced by the pseudo-inverse A† (in Matlab pinv(A)). Ifm > n,
then A† = (A∗A)−1A∗ and if m < n then A† = A∗(AA∗)−1. The Relative Gain Array
has several interesting properties:

• The sum of all elements in a column or row is one.

• Permutations of rows or columns in A give the same permutations in RGA(A)

• RGA(A) = RGA(D1AD2) if D1 and D2 are diagonal, i.e. RGA(A) is indepen-
dent of scaling

• If A is triangular, then RGA(A) is the unit matrix I.

Furthermore, the Relative Gain Array has an interpretation related to control

theory: Let P(s) be the transfer matrix from u to y. Then

• The (k, j) element of P is the transfer function u j → yk when ui = 0 for i ,= j
(open loop control)

• The ( j, k) element of P−1 is the inverse of the transfer function u j → yk when
the other inputs are such that yi = 0 for i ,= k (closed loop control)

Hence, if the (k, j) element of RGA(P(s)) is equal to one, then the value of transfer
function from u j to yk does not depend on whether the remaining inputs operate

in open loop or closed loop. This indicates that the cross-coupling with other loops

is weak.

The following rules of thumb use RGA to identify input-output pairings that

have small cross-coupling. However, the outcome must always be evaluated using

other tools.

1. Find a permutation of inputs and outputs that brings RGA(P(iω c)) as close
as possible to the identity matrix. Here ω c is the closed loop bandwidth of

the system.

2. Avoid pairings that give negative diagonal elements of RGA(P(0))

The second rule is motivated by the desire to have the same sign of the static

gain in one loop regardless if the other loops are closed or not. We illustrate the

rules with an example.

Example: A Distillation Column

A distillation column is used in chemical process industry to separate different

components in a chemical product. This example comes from Shell and describes a

column where raw oil is separated into various petro-chemical derivatives. Heated

raw oil is inserted at the bottom of the column and evaporates. Subcomponents

then condense and get extracted at different levels of the column.

Outputs: Inputs:

y1 = top draw composition u1 = top draw flowrate

y2 = side draw composition u2 = side draw flowrate

u3 = bottom temperature control input

[
Y1(s)

Y2(s)

]

=






4

50s+ 1
e−27s

1.8

60s+ 1
e−28s

5.9

50s+ 1
e−27s

5.4

50s+ 1
e−18s

5.7

60s+ 1
e−14s

6.9

40s+ 1
e−15s






︸ ︷︷ ︸

P(s)






U1(s)

U2(s)

U3(s)





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8.3 Pairing of signals

Figure 8.7 Schematic picture of a distillation column

Computing the RGA for the distillation column model gives

P(0) =

[
4.0 1.8 5.9

5.4 5.7 6.9

]

P(i/50) =

[
0.6871− 2.7437i 0.1548− 1.1419i 1.0135− 4.0469i

1.5758− 3.4781i 1.4704− 3.3397i 3.0247− 4.4589i

]

RGA(P(0)) =

[
0.2827 −0.6111 1.3285

0.0134 1.5827 −0.5962

]

RGA(P(i/50)) =

[
0.4355− 0.3667i −0.6536− 0.0171i 1.2181+ 0.3839i

−0.0906+ 0.3667i 1.5933+ 0.0171i −0.5027− 0.3839i

]

To choose control signal for y1, we apply the rules of thumb to the top row. This

suggests the bottom temperature u3 for control of the top draw composition y1,

since the third column has values slightly closer to 1 than the first column.

Based on the bottom row, we choose the side draw flowrate u2 to control the

side draw composition y2. The top draw flow rate u1 is left unused. The matrix

transfer function P̃(s) from (u3,u2) to (y1, y2) is now to be controlled by a diagonal
controller C(s), say a PI controller:

P̃(s) =







5.9e−27s

50s+ 1

1.8e−28s

60s+ 1

6.9e−15s

40s+ 1

5.7e−14s

60s+ 1







C(s) =






60s+ 1

50s
0

0
60s+ 1

50s






Without feedforward, the closed loop transfer matrix from reference to output

becomes

PC(I + PC)−1
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Bode Magnitude Diagram
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Figure 8.8 Magnitude plots for the closed loop transfer function of the distillation column

and the Bode magnitude plots for the four transfer functions are given in Fig-

ure 8.8. As seen in the plots, the resulting cross-coupling is generally small and

there is no static error.
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