
Lecture 6

Controllability, observability

and multivariable zeros

6.1 Introduction

During the first five lectures we have reconsidered several of the mathematical

tools and methods from the introductory control course and extended them to the

context of multi-variable systems. We have seen that several of the extensions are

straightforward, but also that both design and analysis becomes more complicated.

For multi-variable systems it is harder to illustrate all relevant specifications in

one graph and to keep track of all relevant variables. Hence there a stronger need

for systematic methods to organize information and computations efficiently. This

will be the topic for the remainder of the course.

Before introducing optimization methods for controller design, we will study

how the achivable control performance is limited by properties of the plant. For

this purpose, we will introduce concepts to measure the degree of controllability

and observability of a plant and we will define what a multivariable zero means.

input ω

output θ

Figure 6.1 Example: Ball in the Hoop

Example 1 Consider a system where a ball is rolling inside a hoop as in Figure 6.1.

The dynamics of the ball can be described by the equation

θ̈ + cθ̇ + kθ = ω̇

Two questions will be asked about this system:

1. Starting with the ball at rest in the bottom of the hoop (θ̇(0) = θ(0) = 0), is
it possible to bring the ball to θ(T) = π/4 with θ̇ (T) = 0 using the rotational
speed ω of the hoop as input?

2. Using the same input, is it possible to keep the ball at θ(t) = π/4 for t ≥ T?

The first question turns out to be related to the concept of controllability, while

the second relates to existence of a plant zero. 2
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Figure 6.2 Example: Two water tanks

The ball in the hoop is a single-input-single-output system. In the next example,

we will ask analogous questions for a multivariable system.

Example 2 The water levels in two tanks are varying according to the equations

ẋ1(t) = −x1(t) + u1(t)

ẋ2(t) = −ax2(t) + u1(t)

and the output flows are affected by an additional input

y1(t) = x1(t) + u2(t)

y2(t) = ax2(t) + u2(t)

For this system we are asking the questions

1. Starting from stationary water levels at nominal positions (ẋ1(0) = x1(0) = 0
and ẋ2(0) = x2(0) = 0), is it possible to bring the output flow to y1(t) = 1,
y2(t) = 2 at time t = T using the inputs u1(t) and u2(t) for 0 ≤ t < T?

2. Using the same two inputs, is it possible to keep the outputs at y1(t) = 1,
y2(t) = 2 for t ≥ T?

2

6.2 Controllability

To study the first question of the examples, we make the following definition.

DEFINITION 6.1

The system ẋ(t) = Ax(t) + Bu(t) is said to be controllable , if for every x1 ∈ R
n

there exists u(t), t ∈ [0, t1], such that x(t1) = x1 is reached from x(0) = 0. The
collection of vectors x1 that can be reached in this way is called the controllable

subspace.

If A is exponentially stable, define the controllability Gramian

S =

∫ ∞

0

eAtBBT eA
T tdt
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6.2 Controllability

There are several criteria for controllability:

PROPOSITION 6.1

The following statements regarding a system ẋ(t) = Ax(t) + Bu(t) of order n are
equivalent:

(i) The system is controllable

(ii) rank [A− λ I B] = n for all λ ∈ C

(iii) rank [B AB . . . An−1B] = n

For exponentially stable systems there is a fourth statement equivalent to (i) -(iii):

(iv) The controllability Gramian is non-singular

The controllability Gramian measures gives a quantitative measure of how

difficult it is in a stable system to reach a certain state:

THEOREM 6.1

Let S1 =
∫ t1
0
eAtBBT eA

T tdt. Then, for the system ẋ(t) = Ax(t) + Bu(t) to reach
x(t1) = x1 from x(0) = 0 it is necessary that

∫ t1

0

pu(t)p2dt ≥ xT1 S
−1
1 x1 ≥ x

T
1 S

−1x1

where S is the controllability Gramian. The first inequality becomes equality for

u(t) = BT eA
T (t1−t)S−11 x1

Proof. The matrix inequality S1 ≤ S holds by definition.

0 ≤

∫ t1

0

[xT1 S
−1
1 e

A(t1−t)B − u(t)T ][BT eA
T (t1−t)S−11 x1 − u(t)]dt

= xT1 S
−1
1

∫ t1

0

eAtBBT eA
T tdt S−11 x1

− 2xT1 S
−1
1

∫ t1

0

eA(t1−t)Bu(t)dt +

∫ t1

0

pu(t)p2dt

= −xT1 S
−1
1 x1 +

∫ t1

0

pu(t)p2dt

so
∫ t1
0
pu(t)p2dt ≥ xT1 S

−1
1 x1 with equality attained for u(t) = B

T eA
T (t1−t)S−11 x1. This

completes the proof. 2

The controllability Gramian can be computed by solving a linear system of

equations:

THEOREM 6.2

Given that all eigenvalues of the matrix A have negative real part, the matrix

S =
∫∞

0
eAtBBT eA

T tdt satisfies

AS+ SAT + BBT = 0
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Proof. A change of integration variable gives

∫ ∞

h

eAtBBT eA
T tdt =

∫ ∞

0

eA(t+h)BBT eA
T (t+h)dt

Differentiating both sides with respect to h gives

−eAhBBT eA
Th =

d

dh

∫ ∞

h

eAtBBT eA
T tdt

=

∫ ∞

0

d

dh
[eA(t+h)BBT eA

T (t+h)]dt

=

∫ ∞

0

[AeA(t+h)BBT eA
T (t+h) + eA(t+h)BBT eA

T (t+h)AT ]dt

= A

(∫ ∞

0

eA(t+h)BBT eA
T (t+h)dt

)

+

(∫ ∞

0

eA(t+h)BBT eA
T (t+h)dt

)

AT

Inserting h = 0 yields

−BBT = AS+ SAT

2

Example 3 Two address the first question raised in Example 6.1, note that the

dynamics has the form ẋ(t) = Ax(t) + Bu(t) with

A =

[
−1 0

0 −a

]

B =

[
1 0

1 0

]

so the controllability Gramian is

S =

∫ ∞

0

[
e−t

e−at

] [
e−t

e−at

]T

dt =

[
1
2

1
a+1

1
a+1

1
2a

]

The matrix is non-singular when a ,= 1, so in this case the states and outputs to
arbitrary positions and the answer to the first question is yes. On the other hand,

if a = 1 the two tanks move identically and it is impossible to achieve y1 = 1 and
y2 = 2 simultaneously.

It is natural to expect that the control problem becomes harder as a gets closer

to 1. This is indeed true. In fact, when a ( 1 the inverse Gramian S−1 has large
entries, so the inequality

∫
τ

0

pu(t)p2dt ≥

[
x1(τ )

x2(τ )

]T

S−1
[
x1(τ )

x2(τ )

]

shows that some final states can be reached only with very large inputs. This is

also intuitively clear, since the tanks then have similar dynamcs and it is difficult

to make x1 and x2 move in opposite directions. 2

6.3 Observability

The notion of controllability has a natural dual:
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6.3 Observability

DEFINITION 6.2

The system

ẋ(t) = Ax(t)

y(t) = Cy(t)

is observable if the initial state x(0) = x0 ∈ R
n is uniquely determined by the

output y(t), t ∈ [0, t1]. The collection of vectors x0 that cannot be distinguished
from x = 0 is called the unobservable subspace.
If A is exponentially stable, the observability Gramian is defined as

O =

∫ ∞

0

eA
T tCTCeAtdt

There are several criteria for verification of observability:

PROPOSITION 6.2

The following statements regarding a system ẋ(t) = Ax(t), y(t) = Cx(t) of order
n are equivalent:

(i) The system is observable

(ii) rank

[
A− λ I

C

]

= n for all λ ∈ C

(iii) rank

2

6

6

6

6

4

C

CA

...

CAn−1

3

7

7

7

7

5

= n

For exponentially stable systems there is a fourth equivalent statement:

(iv) The observability Gramian is non-singular

The observability Gramian measures how difficult it is in a stable system to dis-

tinguish two initial states from each other by observing the output.

THEOREM 6.3

Let O1 =
∫ t1
0
eA
T tCTCeAtdt. Then, for ẋ(t) = Ax(t), the influence from the initial

state x(0) = x0 on the output y(t) = Cx(t) satisfies

∫ t1

0

py(t)p2dt = xT0 O1x0 ≤ x
T
0 Ox0

where O is the observability Gramian.

Also the observability Gramian can be computed by solving a linear system of

equations:

THEOREM 6.4

Given that all eigenvalues of the matrix A have negative real part, the matrix

O =
∫∞

0
eA
T tCTCeAtdt satisfies

ATO + OA+ CTC = 0

Proof. The result follows directly from the corresponding formula for the control-

lability Gramian by replacing AT by A (which has no effect on the eigenvalues)
and C by BT . 2
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6.4 Poles and zeros

After Laplace transformation of the signals, the input-output relationship of linear

time-invariant system can be written

Y(s) = [C(sI − A)−1B + D]
︸ ︷︷ ︸

G(s)

U (s)

The transfer matrix G(s) is rational provided that the system is of finite order.
The points p ∈ C where G(s) = ∞ are called poles of G. They are eigenvalues of
A and determine stability. If also G(s)−1 is well-defined and rational, the poles
of G(s)−1 are called zeros of G. The following definitions can be used even when
G(s) is not a square matrix:

• A pole of G is a root of the pole polynomial, the least common denomina-

tor of all minors (sub-determinants) to G(s). The multiplicity of the root
determines the multiplicity of the pole.

• A zero of G is a root of the zero polynomial, the greatest common divisor

of the maximal minors of G(s). The multiplicity of the root determines the
multiplicity of the zero. When G(s) is square, the zero polynomial is detG(s).

Recall that a pole s = a is an eigenvalue of A and has an associated state
trajectory x(t) = x0e

at. A zero describes how inputs and outputs couple to each

other. In particular, a zero s = a means that an input u(k) = u0e
at is blocked. See

Figure 6.3.
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Figure 6.3 A zero at s = iω blocks inputs of that frequency.

Example 4 Recall the ball in the hoop of Example 6.1. The system equation

θ̈ + cθ̇ + kθ = ω̇ shows that The transfer function from ω to θ is

s

s2 + cs+ k

The zero in s = 0 makes it impossible to control the stationary position of the
ball. In particular, the second question raised in the introduction has a negative

answer. 2

Example 5 Laplace transformation of the equations in Example 6.1 gives

sX1 = −X1 + U1 Y1(s) = X1(s) + U2(s) =
1

s+ 1
U1(s) + U2(s)

sX2 = −2X2 + U1 Y2(s) = 2X2(s) + U2(s) =
1

s+ 2
U1(s) + U2(s)

This gives the transfer matrix

G(s) =

[
1
s+1 1

2
s+2 1

]

detG(s) =
−s

(s+ 1)(s+ 2)
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6.5 Realization on diagonal form

so the system has a zero in the origin, indicating that the stationary levels of the

outputs cannot be controlled arbitrarily. In fact, for stationary inputs and states,

the first state equation gives u1 = x1 and the second gives u1 = ax2, so the two
outputs must be equal.

Plotting the singular values of G(iω ) gives
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The largest singular value is fairly constant. This is due to the second input. The

first input makes it possible to control the difference between the two tanks, but

mainly near ω = 1 where the dynamics make a difference. 2

6.5 Realization on diagonal form

Consider a transfer matrix with partial fraction expansion

G(s) =

n∑

i=1

CiBi

s− pi
+ D

This has the realization

ẋ(t) =






p1 I 0

. . .

0 pn I




 x(t) +






B1
...

Bn




u(t)

y(t) = [C1 . . . Cn ] x(t) + Du(t)

The rank of the matrix CiBi determines the necessary number of columns in Bi
and the multiplicity of the pole pi.

Example 6 The system

G(s) =

"

1
s+1

2
(s+1)(s+3)

6
(s+2)(s+4)

1
s+2

#

=

"

1
s+1

1
s+1
− 1
s+3

3
s+2
− 3
s+4

1
s+2

#

=

»

1

0

–

[ 1 1 ]

s+ 1
+

»

0

1

–

[3 1 ]

s+ 2
−

»

1

0

–

[ 0 1 ]

s+ 3
−

»

0

1

–

[3 0 ]

s+ 4

has the realization







ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)







=








−1 0 0 0

0 −2 0 0

0 0 −3 0

0 0 0 −4















x1(t)

x2(t)

x3(t)

x4(t)







+








1 1

3 1

0 −1

−3 0








[
u1(t)

u2(t)

]

[
y1(t)

y2(t)

]

=

[
1 0 1 0

0 1 0 1

]

x(t)

2
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