
Lecture 11 — Optimal Control

◮ The Maximum Principle Revisited

◮ Examples

◮ Numerical methods/Optimica

◮ Examples, Lab 3

Material

◮ Lecture slides

◮ Glad & Ljung, part of Chapter 18

Goal

To be able to

◮ solve simple problems using the maximum principle

◮ formulate advanced problems for numerical solution

Outline

• The Maximum Principle Revisited

◦ Examples

◦ Numerical methods/Optimica

◦ Example — Double integrator

◦ Example — Alfa Laval Plate Reactor

Problem Formulation (1)

Minimize

∫ tf

0

Trajectory cost︷ ︸︸ ︷
L(x(t), u(t)) dt+

Final cost︷ ︸︸ ︷
φ(x(tf ))

where

x(t) ∈ Rn, u(t) ∈ U ⊆ Rm

ẋ(t) = f(x(t), u(t)), x(0) = x0

0 ≤ t ≤ tf , tf given

Here we have a fixed end-time tf . This will be relaxed later on.

The Maximum Principle

Introduce the Hamiltonian

H(x, u, λ) = L(x, u) + λT (t)f(x, u).

and notation

Hx =
∂H

∂x
=

(
∂H

∂x1

∂H

∂x2
. . .

)

Theorem 18.2 of Glad/Ljung

Assume that (1) has a solution {u∗(t), x∗(t)}. Then

min
u∈U

H(x∗(t), u, λ(t)) = H(x∗(t), u∗(t), λ(t)), 0 ≤ t ≤ tf ,

where λ(t) solves the adjoint equation

dλ

dt
= −HT

x (x
∗(t), u∗(t), λ(t)), with λ(tf ) = φTx (x

∗(tf ))

Remarks

The Maximum Principle gives necessary conditions

A pair (u∗(·), x∗(·)) is called extremal if the conditions of the
Maximum Principle are satisfied. Many extremals can exist.

The maximum principle gives all possible candidates.

However, there might not exist a minimum!

Example

Minimize x(1) when ẋ(t) = u(t), x(0) = 0 and u(t) is free

Goddard’s Rocket Problem revisited

How to send a rocket as high up in the air as possible?

d

dt



v
h
m


 =



u−D

m
− g

v
−γu




h

m

(v(0), h(0),m(0)) = (0, 0,m0), g, γ > 0
u motor force, D = D(v, h) air resistance

Constraints: 0 ≤ u ≤ umax and m(tf ) = m1 (empty)

Optimization criterion: maxu h(tf )

Problem Formulation (2)

Minimize

∫ tf

0
L(x(t), u(t)) dt+ φ(x(tf ))

where

x(t) ∈ Rn, u(t) ∈ U ⊆ Rm

ẋ(t) = f(x(t), u(t)), x(0) = x0 ψ(x(tf )) = 0

0 ≤ t ≤ tf , but tf could be free

Note the differences compared to standard form:

◮ End constraints ψ(x(tf )) = 0

◮ tf could be a free variable (i.e., not specified a priori)
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The Maximum Principle (2)

Theorem 18.4 of Glad/Ljung

Define the Hamiltonian:

H(x, u, λ, n0) = n0L(x, u) + λT (t)f(x, u).

Assume that (2) has a solution {u∗(t), x∗(t)}. Then there is a
vector function λ(t), a number n0 ≥ 0 and a vector µ ∈ Rr such
that [n0 µT ] 6= 0 and

min
u∈U

H(x∗(t), u, λ(t), n0) = H(x∗(t), u∗(t), λ(t), n0), 0 ≤ t ≤ tf ,

where λ(t) solves the adjoint equation

λ̇(t) = −HT
x (x

∗(t), u∗(t), λ(t), n0)

λ(tf ) = n0φ
T
x (x

∗(tf )) + ψT
x (x

∗(tf ))µ

If the end time tf is free, then H(x∗(tf ), u∗(tf ), λ(tf ), n0) = 0.

Normal/abnormal cases

Can scale n0, µ, λ(t) by the same constant

Can reduce to two cases

◮ n0 = 1 (normal)

◮ n0 = 0 (abnormal, since L and φ don’t matter)

As we saw before (18.2): fixed time tf and no end constraints ⇒
normal case

Hamilton function is constant

H is constant along extremals (x∗, u∗)

Proof (in the case when u∗(t) ∈ Int(U)):

d

dt
H = Hxẋ+Hλλ̇+Huu̇ = Hxf − fTHT

x + 0 = 0

Feedback or Feedforward?

Example:

Minimize J =

∫ ∞

0

(
x2 + u2

)
dt

subject to ẋ = u, x(0) = 1

The minimal value J = 1 is achieved for

u(t) = −e−t open loop (i)

or
u(t) = −x(t) closed loop (ii)

(i) =⇒ marginally stable system
(ii) =⇒ asymptotically stable system

Sensitivity for noise and disturbances differ!!

Reference generation using optimal control

Note that the optimization problem makes no distinction between
open loop control u∗(t) and closed loop control u∗(t, x). Feedback
is needed to take care of disturbances and model errors.

Idea: Use the optimal open loop solution u∗(t), x∗(t) as reference
values to a linear regulator that keeps the system close to the
desired trajectory

Efficient for large setpoint changes.

Planned trajectory x∗

x− x∗

Recall Linear Quadratic Control

minimize xT (tf )QNx(tf ) +

∫ tf

0

[
x
u

]T [
Q11 Q12

QT
12 Q22

] [
x
u

]

where
ẋ = Ax+Bu, y = Cx

Optimal solution if tf = ∞, QN = 0, all matrices constant, and x
measurable:

u = −Lx
where L = Q−1

22 (Q12 +BTS) and S = ST > 0 solves

SA+ATS +Q11 − (Q12 + SB)Q−1
22 (Q12 +BTS) = 0

Second Variations

Approximating J(x, u) around (x∗, u∗) to second order

δ2J =
1

2
δTx φxx δx +

1

2

∫ tf

t0

[
δx
δu

]T[
Hxx Hxu

Hux Huu

] [
δx
δu

]
dt

δẋ = fxδx + fuδu

where J = J∗ + δ2J + . . . is a Taylor expansion of the criterion
and δx = x− x∗ and δu = u− u∗.

Treat this as a new optimization problem. Linear time-varying
system and quadratic criterion. Gives optimal controller

u− u∗ = L(t)(x− x∗)

Opt. Ref. Gen.

x∗ u∗

u y

Proc.

x̂

Obs.

Lin. Cont.

+

+ +

-

Take care of deviations with linear controller
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◦ Example — Alfa Laval Plate Reactor

Example: Optimal heating

Minimize

∫ tf=1

0
P (t) dt

when Ṫ = P − T

0 ≤ P ≤ Pmax

T (0) = 0, T (1) = 1

T temperature
P heat effect

Solution

Hamiltonian
H = n0P + λP − λT

Adjoint equation

λ̇T = −HT = −∂H
∂T

= λ λ(1) = µ

⇒ λ(t) = µet−1

⇒ H = (n0 + µet−1)︸ ︷︷ ︸
σ(t)

P − λT

At optimality

P ∗(t) =
{

0, σ(t) > 0
Pmax, σ(t) < 0

Solution

µ > 0 gives σ(t) > 0 for all t, so P (t) ≡ 0 and T (1) 6= 1.

µ = 0 gives n0 > 0 and σ(t) > 0 for all t. Again impossible.

µ < 0 ⇒ Constant P or just one switch!

T (t) approaches one from below, so P 6= 0 near t = 1. Hence

P ∗(t) =
{

0, 0 ≤ t ≤ t1
Pmax, t1 < t ≤ 1

T (t) =

{
0, 0 ≤ t ≤ t1∫ 1
t1
e−(t−τ)Pmax dτ =

(
e−(t−1) − e−(t−t1)

)
Pmax, t1 < t ≤ 1

Time t1 is given by T (1) =
(
1− e−(1−t1)

)
Pmax = 1

Has solution 0 ≤ t1 ≤ 1 if Pmax ≥
1

1− e−1

Example – The Milk Race

Move milk in minimum time without spilling!
[M. Grundelius – Methods for Control of Liquid Slosh]

[movie]

Minimal Time Problem

NOTE! Common trick to rewrite criterion into “standard form”!!

Minimize tf = Minimize

∫ tf

0
1 dt

Control constraints
|u(t)| ≤ umax

i

No spilling
|Cx(t)| ≤ h

Optimal controller has been found for the milk race

Minimal time problem for linear system ẋ = Ax+Bu, y = Cx
with control constraints |ui(t)| ≤ umax

i . Often bang-bang control
as solution

Results- milk race

Maximum slosh φmax = 0.63
Maximum acceleration = 10 m/s2

Time optimal acceleration profile

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−15

−10

−5

0

5

10

15
Acceleration

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

−0.5

0

0.5

1
Slosh

Optimal time = 375 ms, industrial = 540ms

Outline

◦ The Maximum Principle Revisited

◦ Examples

• Numerical methods/Optimica

◦ Example — Double integrator

◦ Example — Alfa Laval Plate Reactor
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Numerical Methods for Dynamic Optimization

◮ Many algorithms
◮ Applicability highly model-dependent

(ODE, DAE, PDE, hybrid?)
◮ Calculus of variations
◮ Single/Multiple Shooting
◮ Simultaneous methods
◮ Simulation-based methods

◮ Analogy with different simulation algorithms
(but larger diversity)

◮ Heavy programming burden to use numerical algorithms
◮ Fortran
◮ C

◮ Engineering need for high-level descriptions

Modelica — A Modeling Language

◮ Modelica is increasingly used in industry
◮ Expert knowledge
◮ Capital investments

◮ Usage so far
◮ Simulation (mainly)

◮ Other usages emerge
◮ Sensitivity analysis
◮ Optimization
◮ Model reduction
◮ System identification
◮ Control design

Optimica and JModelica — A Research Project

◮ Shift focus:
◮ from encoding
◮ to problem formulation

◮ Enable dynamic optimization of Modelica models
◮ State of the art numerical algorithms

◮ Develop a high level description for optimization problems
◮ Extension of the Modelica language

◮ Develop prototype tools
◮ JModelica and The Optimica Compiler
◮ Code generation

Outline

◦ The Maximum Principle Revisited

◦ Examples

◦ Numerical methods/Optimica

• Example — Double integrator

◦ Example — Alfa Laval Plate Reactor

Optimica—An Example

min
u(t)

∫ tf

0
1 dt

subject to the dynamic constraint

ẋ(t) = v(t), x(0) = 0

v̇(t) = u(t), v(0) = 0

and
x(tf ) = 1

v(tf ) = 0

v(t) ≤ 0.5

−1 ≤u(t) ≤ 1

A Modelica Model for a Double Integrator

A double integrator model

model DoubleIntegrator

Real x(start =0);

Real v(start =0);

input Real u;

equation

der(x)=v;

der(v)=u;

end DoubleIntegrator ;

The Optimica Description

Minimum time optimization problem

optimization DIMinTime (objective=cost(finalTime),

startTime=0,

finalTime(free=true ,initialGue

Real cost;

DoubleIntegrator di(u(free=true ,initialGuess =0.0));

equation

der(cost) = 1;

constraint

finalTime >=0.5;

finalTime <=10;

di.x(finalTime )=1;

di.v(finalTime )=0;

di.v <=0.5;

di.u>=-1; di.u<=1;

end DIMinTime;

Optimal Double Integrator Profiles
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• Example — Alfa Laval Plate Reactor

Optimal Start-up of a Plate Reactor

T T T T T T T T T T

FC FC

HEX

HEX

Reactor outletReactant A

Reactant B

Cooling water

qB1 qB2

Tc

Tf

◮ Achieve safe start-up Tr ≤ Tmax

◮ Maximize the conversion

◮ Minimize the start-up time

The Optimization Problem

Reduce sensitivity of the nominal start-up trajectory by:

- Introducing a constraint on the accumulated concentration of
reactant B
- Introducing high frequency penalties on the control inputs

min
u

∫ tf

0
αAc

2
A,out + αBc

2
B,out + αB1q

2
B1,f + αB2q

2
B2,f+

αT1 Ṫ
2
f + αT2 Ṫ

2
c dt

subject to ẋ = f(x, u)

Tr,i ≤155, i = 1..N cB,1 ≤ 600, cB,2 ≤ 1200

0 ≤qB1 ≤ 0.7, 0 ≤ qB2 ≤ 0.7

−1.5 ≤Ṫf ≤ 2, −1.5 ≤ Ṫc ≤ 0.7

30 ≤Tf ≤ 80, 20 ≤ Tc ≤ 80

The Optimization Problem—Optimica

Robust optimization formulation
optimization PlateReactorOptimization (objective=cost(finalTime),

startTime=0,

finalTime =150)

PlateReactor pr(u_T_cool_setpoint(free=true), u_TfeedA_setpoint(free=true),

u_B1_setpoint(free=true), u_B2_setpoint(free=true ));

parameter Real sc_u = 670/50 "Scaling factor ";

parameter Real sc_c = 2392/50 "Scaling factor ";

Real cost(start =0);

equation

der(cost) = 0.1*pr.cA [30]^2* sc_c^2 + 0.025* pr.cB [30]^2* sc_c^2 + 1*pr.u_B1_setpoint_f ^2

1*pr.u_B2_setpoint_f ^2 + 1*der(pr.u_T_cool_setpoint )^2* sc_u^2 +

1*der(pr.u_TfeedA_setpoint )^2* sc_u ^2;

constraint

pr.Tr/u_sc <=(155+273)* ones (30);

pr.cB[1] <=200/ sc_c; pr.cB [16] <=400/ sc_c;

pr.u_B1_setpoint >=0; pr.u_B1_setpoint <=0.7;

pr.u_B2_setpoint >=0; pr.u_B2_setpoint <=0.7;

pr.u_T_cool_setpoint >=(15+273)/ sc_u; pr.u_T_cool_setpoint <=(80+273)/ sc_u;

pr.u_TfeedA_setpoint >=(30+273)/ sc_u; pr.u_TfeedA_setpoint <=(80+273)/ sc_u;

der(pr.u_T_cool_setpoint )>=-1.5/ sc_u; der(pr.u_T_cool_setpoint ) <=0.7/ sc_u;

der(pr.u_TfeedA_setpoint )>=-1.5/ sc_u; der(pr.u_TfeedA_setpoint )<=2/ sc_u;

end PlateReactorOptimization;
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Almost as fast, but more robust with lower cB-constraints

Summary

• The Maximum Principle Revisited

• Examples

• Numerical methods/Optimica

• Example — Double integrator

• Example — Alfa Laval Plate Reactor
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