Lecture 11 — Optimal Control

» The Maximum Principle Revisited
» Examples
> Numerical methods/Optimica

» Examples, Lab 3

Material

> Lecture slides
> Glad & Ljung, part of Chapter 18

Goal

To be able to

» solve simple problems using the maximum principle

» formulate advanced problems for numerical solution
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Problem Formulation (1)

Trajectory cost Final cost
tf p——— —_——
Minimize / T (), at)) dt + 5a(iy)
0

where
xz(t) e R", wu(t)eUCR™
i(t) = f(x(t),u(t),  @(0) =0

0<t<ty, ty given

Here we have a fixed end-time ¢;. This will be relaxed later on.

The Maximum Principle

Introduce the Hamiltonian
H(x,u,\) = L(z,u) + AT (t) f (z, u).

and notation

Hz_aH_<aH oH >

T 0x \Owm 0wy

Theorem 18.2 of Glad/Ljung

Assume that (1) has a solution {u*(t),2*(t)}. Then

iﬂgilljl H(z"(t),u,A(t)) = H(z"(t),u"(t),A(t)), 0<t<ty,

where A(t) solves the adjoint equation

B HI @000 M0), with Ag) = 67 (1)

Remarks

The Maximum Principle gives necessary conditions

A pair (u*(-),z*(-)) is called extremal if the conditions of the
Maximum Principle are satisfied. Many extremals can exist.

The maximum principle gives all possible candidates.
However, there might not exist a minimum!

Example

Minimize x(1) when @(t) = u(t), (0) = 0 and u(t) is free

Goddard’s Rocket Problem revisited

How to send a rocket as high up in the air as possible?

e w— D —y
— | h] = m
dt v
m o ‘ k

(v(0), ~(0), m(0)) = (0,0,mo), g,7 >0
u motor force, D = D(v, h) air resistance

Constraints: 0 < u < Upqaz and m(ty) = my (empty)

Optimization criterion: max, h(ty)

Problem Formulation (2)

ty

Minimize / L(x(t), u(t)) dt + d(a(ty)
0

where

#(t) € R", u(t)eUC R™

i(t) = flz(t),u®), 20)=z0 Y(x(ty)=0
0<t<ty, but ¢t could be free

Note the differences compared to standard form:

> End constraints ¥(z(tf)) =0

> ty could be a free variable (i.e., not specified a priori)




The Maximum Principle (2)

Theorem 18.4 of Glad/Ljung

Define the Hamiltonian:
H(z,u, A\, ng) = noL(x,u) + AT (t) f(z,u).

Assume that (2) has a solution {u*(t), z*(t)}. Then there is a
vector function A(t), a number ng > 0 and a vector 1 € R" such
that [ng u”] # 0 and

mill}H(x*(t),u, A(t),ng) = H(x"(t),u" (t),A(t),no), 0<t<ty,
ue
where A(t) solves the adjoint equation

At) = —H{ (x*(£),u" (1), A(t), no)
Aty) = nody (@ (7)) + vy (" (7))

If the end time t¢ is free, then H(x*(tf),u*(ts), A(ty),ng) = 0.

Normal /abnormal cases

Can scale ng, j1, A(t) by the same constant

Can reduce to two cases

> ng =1 (normal)

> ng = 0 (abnormal, since L and ¢ don't matter)

As we saw before (18.2): fixed time ¢t and no end constraints =
normal case

Hamilton function is constant

H is constant along extremals (z*, u*)

Proof (in the case when u*(t) € Int(U)):

%H:Hxa'c+HA/'\+Huu:HszfTHzT+O:0

Feedback or Feedforward?

Example:
oo
Minimize J:/ (2% +u?) dt
0
subject to = = u, z(0) =1
The minimal value J =1 is achieved for
u(t) = —e* open loop 0]

or
u(t) = —xz(t) closed loop (i)

(i) = marginally stable system
(i) = asymptotically stable system

Sensitivity for noise and disturbances differ!!

Reference generation using optimal control

Note that the optimization problem makes no distinction between
open loop control u*(t) and closed loop control u*(t,z). Feedback
is needed to take care of disturbances and model errors.

Idea: Use the optimal open loop solution u*(t), z*(t) as reference
values to a linear regulator that keeps the system close to the
desired trajectory

Efficient for large setpoint changes.

Planned trajectory x*

Recall Linear Quadratic Control

S e 1" z
minimize xT(tf)QNx(tf) +/0 { " } { 8%«; 8;2 } { N }
where
&= Ax+ Bu, y=Cxzx

Optimal solution if t; = 0o, @y = 0, all matrices constant, and z
measurable:
u = —Lx

where L = Q55 (Q12 + BTS) and S = ST > 0 solves

SA+ATS + Q1 — (Qu2 + SB)Q33 (Q12 + BYS) =0

Second Variations

Approximating J(z,u) around (z*,u*) to second order

T
27 l T l tr 51 sz ku 61
0= 261 ¢mc 6z+ 2 to (5u Hyy Huy 5u dt

where J = J* +§2J + ... is a Taylor expansion of the criterion
and 0, = x — z* and 6, = u — u*.

Treat this as a new optimization problem. Linear time-varying
system and quadratic criterion. Gives optimal controller

u—u"=L(t)(z —x)

Opt. Ref. Gen.

(+>—>Lin. Cont. [ . Proc.

Obs.

Take care of deviations with linear controller
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Example: Optimal heating

tr=1
Minimize / P(t)dt
0

when T=P-T
T()=0, T(1)=1

T temperature
P heat effect

Solution

Hamiltonian
H=noP+ AP —\T

Adjoint equation

AT=—HT=—ﬁ=A A1) =p

= A(t) = pet!
= H=(ng+pe'™")P—AT
—————
o(t)
At optimality

N a(t)>0
P(t) _{ Prass o(t) <0

Solution

>0 gives o(t) > 0 for all ¢, so P(t) =0 and T'(1) # 1.
=0 gives ng > 0 and o(t) > 0 for all t. Again impossible.
#t < 0 = Constant P or just one switch!

T'(t) approaches one from below, so P # 0 near t = 1. Hence

O, 0<t<t

P(t)i{Pmaxy t1<t§1
o 0<t<t
=9 S e Prgedr = (70D — e C-0) B 1y <t <1

Time t1 is given by T(1) = (1 — e~ (171)) Py = 1
1

Has solution 0 < t; <1 if Ppax > g
—e

Example — The Milk Race

Move milk in minimum time without spilling!
[M. Grundelius — Methods for Control of Liquid Slosh]

[movie]

Minimal Time Problem

[NOTE! Common trick to rewrite criterion into “standard form” 1]

ty
Minimize t; = Minimize / 1dt
0

Control constraints

lu(t)] < u*™
No spilling

[Ca(t)] < h
Optimal controller has been found for the milk race
Minimal time problem for linear system © = Az + Bu, y = Cx

with control constraints |u;(t)| < u"*®. Often bang-bang control
as solution

Results- milk race

Maximum slosh ¢4, = 0.63
Maximum acceleration = 10 m/s?
Time optimal acceleration profile

Acosleraion

Optimal time = 375 ms, industrial = 540ms
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Numerical Methods for Dynamic Optimization

» Many algorithms
> Applicability highly model-dependent
(ODE, DAE, PDE, hybrid?)
> Calculus of variations
> Single/Multiple Shooting
> Simultaneous methods
> Simulation-based methods

» Analogy with different simulation algorithms
(but larger diversity)
» Heavy programming burden to use numerical algorithms
» Fortran
» C

» Engineering need for high-level descriptions

Modelica — A Modeling Language

» Modelica is increasingly used in industry

>

>

Expert knowledge
Capital investments

» Usage so far

>

Simulation (mainly)

> Other usages emerge

>

>
>
>
>

Sensitivity analysis
Optimization

Model reduction
System identification
Control design

Optimica and JModelica — A Research Project

» Shift focus:

» from encoding
» to problem formulation

v

Enable dynamic optimization of Modelica models
» State of the art numerical algorithms

v

Develop a high level description for optimization problems
» Extension of the Modelica language
» Develop prototype tools

» JModelica and The Optimica Compiler
» Code generation
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Optimica—An Example

ty
min/ 1dt
u(t) Jo

subject to the dynamic constraint

(t) =v(t), «(0)=0
o(t) = u(t), v(0)=0
and
z(ty) =
v(ty)
(t)

v
-1 <u

IN

1
0
0.
)

5
t) <1

—

A Modelica Model for a Double Integrator

A double integrator model

model Doublelntegrator
Real x(start=0);
Real v(start=0);
input Real u;
equation
der (x)=v;
der (v)=u;
end DoubleIntegrator;

The Optimica Description

Minimum time optimization problem

optimization DIMinTime (objective=cost(finalTime),
startTime=0,
finalTime (free=true,initialGu
Real cost;
DoubleIntegrator di(u(free=true,initialGuess=0.0));
equation
der (cost) = 1;
constraint
finalTime >=0.5;
finalTime <=10;
di.x(finalTime)=1;
di.v(finalTime)=0;
di.v<=0.5;
di.u>=-1; di.u<=1;
end DIMinTime;

Optimal Double Integrator Profiles

15
o s
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Optimal Start-up of a Plate Reactor

Reactant B

Reactant A qB1 qB2

T
'—»\@@@@@ © o 0 0 0|
|

JL

t Cooling water

Reactor outlet

-

» Achieve safe start-up T} < Thnaz
» Maximize the conversion

» Minimize the start-up time

The Optimization Problem

Reduce sensitivity of the nominal start-up trajectory by:

- Introducing a constraint on the accumulated concentration of
reactant B
- Introducing high frequency penalties on the control inputs

ty
: 2 2 2 2
rrgn/ QACH oyt T ABCB oyt T OB14B1,r + OB20B s+
0

aq, sz + ap, TL2 dt

The Optimization Problem—Optimica

Robust optimization formulation

optimization PlateReactorOptimization (objective=cost(finalTime),
startTime=0,
finalTime=150)
PlateReactor pr(u_T_cool_setpoint(free=true), u_TfeedA_setpoint(free=true),
u_Bl_setpoint (free=true), u_B2_setpoint(free=true));
parameter Real sc_u = 670/50 "Scaling factor";
parameter Real sc_c 2392/50 "Scaling factor";
Real cost(start=0);
equation
der(cost) = 0.1xpr.cA[30]°2#sc_c”2 + 0.025%pr.cB[30]"2%sc_c”2 + 1xpr.u_Bl_setpoint_f"J
1*pr.u_B2_setpoint_f~2 + 1xder(pr.u_T_cool_setpoint) 2*sc_u~2 +
1xder (pr.u_TfeedA_setpoint) 2%sc_u"2;

constraint
pr.Tr/u_sc<=(155+273) *ones (30);

Subject tO jf — f(.T, u) pr.cB[1]<=200/sc_c; pr.cB[16]<=400/sc_c;
T,; <155, i=1.N c¢p1 <600, cp2 <1200 PR setpeint o0 prouiB2iserpeint o0 T)
0 <gp1 < 0.7, 0< qp2 < 0.7 pr.u_T_cool_setpoint >=(15+273)/sc_u; pr.u_T_cool_setpoint <=(80+273)/sc_u;
pr.u_TfeedA_setpoint >=(30+273)/sc_u; pr.u_TfeedA_setpoint <=(80+273)/sc_u;
—1.5 STf <2, —-15<T.<07 der (pr.u_T_cool_setpoint)>=-1.5/sc_u; der(pr.u_T_cool_setpoint)<=0.7/sc_u;
der (pr.u_TfeedA_setpoint)>=-1.5/sc_u; der(pr.u_TfeedA_setpoint)<=2/sc_u;
30 STf <80, 20<T.<80 end PlateReactorOptimization;
3 3 o ]
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Almost as fast, but more robust with lower cg-constraints




