Dynamic programming

v

Closed loop formulation of optimal control

» Intuitive methods of solution

Guarantees global optimality

lteratively solves the problem starting at the end-time

\{

v

‘Life can only be understood backwards;
but it must be lived forwards’

Kierkegaard

Example: Shortest path

As an example we try to find the shortest path from “A” to “H” in
the above graph.

Example: Shortest path

Example: Shortest path

We proceed with backward induction. Once the final node is
reached the remaining cost is 0.

Knowing the cost at “H” to be 0, costs of getting from “E”, “F”
and “G” to “H” are easily computed.

Example: Shortest path

Example: Shortest path

Now the optimal “cost-to-go” at “E”, “F” and “G” can be used to
get the optimal “cost-to-go” at “B”, “C” and “D”.

In the next step we arrive at the origin.

Example: Shortest path

The procedure also gives us the optimal path.

Basic problem formulation: The system

» First we assume that the system is in discrete time
Tp1 = fr(xr,ur), k=0,1,...,N—1

where x;, is the state u;, € U(x;) is the control.
» Feedback-control implies u;, = 1y, (xz)
» In closed-loop form the system can thus be written

xp1 = [r(2k, Up(x2))

Basic problem formulation: The cost

» We let u = {uo, 1,...,un—1} and assume that we have
an additive cost

N-1

Ju(xo) = gn(xn) + > gr(rs r(xr))
k=0

> Total cost J,(xp) is a function of both initial state xo and
feedback law u
» N is the horizon of the problem
» Finite-horizon: N < co
> Infinite-horizon: N = co

Basic formulation: Minimal cost and optimal strategy

> An optimal policy u* is one that minimizes J,(xo) (for all
%)

Iy =min
e (%0) min u(%0)
optimization is performed over the set I1, of admissible

control policies

» For deterministic problems a control is admissible
whenever
up = Up(xr) € U(xz)

The principle of optimality

Let u* = {15, 43, - -, _1} be an optimal policy for the basic
problem and assume that when applying ©*, a given state x;
occurs at time i, when starting at xg.

Consider the subproblem whereby we are in state x; at time i
and wish to minimize the “cost-to-go” from time i to time N

N-1
an(@n) + Y gr(x, tr(xn)).

k=i
Principle of optimality

The truncated policy {4, 4, 1,- -, Hy_1} is optimal for the
subproblem starting from x; at time i.

Principle of optimality

Vasterds

Karlstad b Eskilstuna. A A &
L5 Orebr, o {©Drottning Kristinas vag

sodgftalje

» Google maps fastest
route from LTH to

Nog i

‘.,-(‘cf; e e KTH passes through
bofgons Srigie LT Joénkdping
;’ e » Subpath starting in

Joénkoping is the
fastest route from
Joénkodping to KTH

Halmstad

Helslr{:
Ole Romers vig

P

Liepaja

1

Kli\géd

—

The dynamic programming algorithm

Let
N-1

Vi(ar) = gn(an) + Y g 125 (x;)
j=k
so that V;,(x;) is the optimal “cost-to-go” from time k& to time N

The Bellman equation

For every initial state x(, the optimal cost *(x) is given by the
last step in the following backward-recursion.

min
Up(xr)
Vn(xn) = gn(xn)

Vi(xr) = e lgr (s ur, wr) + Vig1 (fr (22, ur))]

We get the optimal control “for-free”

1y (xz) = argmin [gg (xg, up, wp) + Vi1 (fa(2r, uz))]
up€ Uy (xz)

Managing spending and saving

Example

An investor holds a capital sum in a building society, which
gives an interest rate of 8 x 100% on the sum held at each time
k=0,1,...,N — 1. The investor can chose to reinvest a portion
u of the interest paid which then itself attracts interest. No
amounts invested can ever be withdrawn. How should the
investor act so as to maximize total reward by time N — 1?

» We take as the state x;, the present income at time
k=0,1,...,N —1and let u;, € [0,1] be the fraction of
reinvested interest, hence

Xpy1 = X + Oupxy, =: f(xp, up)

The reward is gp(x,u) = (1 —u)x and gy (x,u) = 0.

Managing spending and saving

» The optimality equation is V(N,x) = 0,

V(k,x) = Orga<xl{(1—u)x+V(k+1, (1+6u)x)}, k=0,1,...

» We get
V(N -1,x)= Orgfsxl{(l —u)x+0}=x
V(N —2,x) = Jélfg"l{(l —u)x + (1+ 6u)x}
= 01235)(1{2x + (0 — Dux} = max{2,1+ 0}x = pox
» Guess: V(N —s+1,x) = ps_1x, then
V(N = 5,2) = max {(1— s+ pos(1+ u6)x)}

=max{l + ps_1, (1 + 0)ps—1}x = psx

Managing spending and saving

\4

We have thus verified that V(N — s,x) = psx, and found
the recursion

Ps = ps—1 +max{1,6p; 1}

v

Together with p; = 1 this gives

fors < s*

S .
Pe= {3*(1 +0)*=" otherwise. s =[1/0]

v

The optimal policy is then

|

1 fork< N —s*
0 fork> N —s*.

Continuous time optimal control: The HJB-equation Continuous time problem formulation

» In continuous time the system is given by
» So far we have only considered the discrete time case)
» Dynamic programming can also be applied in continuous #t) = f=(@)u®), te0.T]
time, this leads to the Hamilton-Jacobi-Bellman (HJB) with x(0) = xo and u(t) € U(x(¢)), for all ¢ € [0, T].
equation:
» Benefits over PMP:

» We define the cost as

. T
+ Gives closed-loop optimal control in continuous time _
+ Sufficient condition of optimality J(x0) = ¢(x(T)) + /O L(x(2), u(t))dt
» Drawbacks:)) . §
— Requires solving a highly non-linear PDE > With optimal “cost-to-go” from (¢, x)

— Well-posedness of the PDE problem proved only in the '80s

V(t,x) = min {¢(x(T)) + /tT L(x(t),u(t))dt}

The HJB-equation: Informal derivation The HJB-equation: Informal derivation

» Dynamic programming now yields
» divide [0, 7] into N subintervals of length 6 = T'/N

V(kS,x) = min[L(x,u)d + V((k+ 1)5,x + ,u)o)],
> Let x = x(kd) and uj, = u(kJ), for £ =0,1,...,N and (kS x) Iuréllrfl[() (« 10,2+ flx,u)9)]

approximate the system by V(NG,x) = ¢(x).
Xpy1 = xp + f(xp,ur)d, k=0,1,...,N. » For small 6§ we get (with ¢ = kJ)
» The optimal “cost-to-go” is approximated by V(E+06,x+ f(x,u)d) ~ V(t,x) + Vi(t,x)0 + V.V (t,x) - f(x,u)d
N-1 » Inserting this in the DP equation gives
V(kS,x)= min [p(xy)+ D Llxp,ur)d]
OrotNL k=0 V(¢,x) Nmi{’l[L(x,u)é + V(t,x)
ue

+ Vi(t,x)0 + VV(t,x) - f(x,u)d]

The HJB-equation Example: The HJB-equation

Example

The Hamilton-Jacobi-Bellman equation Consider the simple example involving the scalar system
For every initial state x, the optimal cost is given by (t) = u(t)
J*(x0) = V(0,x0) where V (¢,x) is the solution to the PDE ’
ith th i < 1lforall T h
Vilt,x) = —milr} (L(t,u) + VoV (6.5) - £(x,0)] with the constraint |u(¢)| < 1 for all ¢ € [0, T] and the cost
ue

V(T,2) = 0(x) I(x0) = 5 (1),

As before the optimal control is given in feedback form by . . .

» The HJB equation for this problem is
“(t,x) = argmin [L(x,u) + V,V(¢,x) - s

w(t,x) gmi [L(x,u) (t,) - f(x,)] Vi(t, x) :_\I(I?ir<11[vx(t’x)u]

with terminal condition V (T, x) = x2/2.

Example: The HJB-equation Example: The HJB-equation

» An optimal control for this problem is

1 forx<O . e
ut,x) = 0 forx=0 s

—1 forx>0

» For |x| > T — t we have V(¢,x) = 1/2(|x| — (T —t))?,
» The optimal “cost-to-go” with this control is hence
Vi=lx| (T — 1)

= L max{0, |x| — (T — £)1)?
Vi62) = 5 tmax{0 e = (T =) min [Vi(t,x)u] = —sgn(x)Va(t,x) = —san(x)? (x| — (T — 1))

lu(2)|<1
=—(lx[= (T -1))
» For |x| < T —t we have V(¢,x) = 0 and the HJB equation
holds trivially

Infinite horizon problem

Assume that the final cost is ¢(x(7")) = 0 and the final time
T — +o0, and that there exists some control such that the total
cost remains bounded in the limit. Hence, we want to solve

+00
min/ L(x(t),u())dt, x(0) = xo
u 0
It is intuitive that the cost-to-go from (x, t)
T
V(x,t) =min/ L(x(t), u(t))dt = V (x)
v Jt

does not depend on the initial time but only on the initial state.

The HJB equation then becomes
0 =min [L(x,u) + V,V(x) - f(x,u)]

(Observe that, for scalar problems, this is an ODE!)

Infinite horizon problem: example

+0oo
min / @) +ut@)de, x(0) = %o
v Jo
From the stationary HJB egn we get
0 = min {x4 +ut + Ve(x)- u}

and putting the derivative with respect to « equal to 0

x*=3 (ivx(x))‘u3

which gives V,(x) = £4(3)3/*x® and the + sign should be
chosen to have V positive definite)since L is. This gives the
optimal feedback control law

V@) = —(5) "

Dynamics Programming for LQ control

Consider the optimal feedback control problem for an LTI
system & = Ax + Bu with cost

J= /0 " (W (0@x(0) + w'(ORu(®) dt + x(T) Mx(T)

where @, R, M are symmetric positive definite. The HJB egn
reads

0 = min {x'Qx + u'Ru + V; + V) (Ax + Bu)}
u

with final time condition V (T, x) = x’Mx.

Dynamics Programming for LQ control

With the ansatz V (x,¢) = 2’ P(¢)x with symmetric P(¢), we get
that the optimal control is in the form

u*=-R'B'Px
and P = P(¢) satisfies the following differential eqn
P=_-PA-AP-Q+PBR'BP PT)=M

which is called the differential Riccati equation (DRE).

For the infinite horizon problem this reduces to
0=—-PA—A'P—Q+PBRIB'P

which is called the algebraic Riccati equation (ARE).

Bonus: Dynamic programming and randomness

» So far we have only considered deterministic systems

» For deterministic systems open-loop and closed-loop
control coincide
» Minimizing over admissible policies it = {uo ..., Un-1}
equivalent to minimizing over control vectors {uo, ..., un_1}
» Given u, future states are perfectly predictable through

*ri1 = fr(xn, i (x2)), k=0,1,...,N—1
» Corresponding controls perfectly predictable through
up, = fr(xr)

» When introducing randomness in the state evolution,
closing the loop becomes important

Problem with randomness: The system

» We assume that the system is in discrete time but add
randomness

%1 = fr(xn, up, W)
where x;, is the state u, € U(x;) is the control and wy, is a
noise term.

» The distribution of the noise term w;, only depends on the
past through x; and uy,

» In closed-loop form the system can thus be written

Xpe1 = fr(on, i (xr), we)

Basic problem formulation: The cost

» In the random case we get the cost

N-1
Ju(x0) = E |gn(xn) + > gi(xns tr(xr), wr)
k=0
where expectation is taken over the random variables «x;,
and wy,
> Expected cost J,(xo) is a function of both initial state xo
and feedback law u

Minimal cost and optimal strategy

> An optimal policy u* is a policy that minimizes J,(xo) (for

every xg)
oJ =mindJ
i (%0) ,uell'l u(xO)
» Optimization is performed over the set, I1, of admissible
controls

> up € U(xk), for all x;,
» u;, does not depend on future events

» Optimal control is in feedback-form u} = uj(x;)

The value of information

Two chess players play a two round chess match. Winning one
round gives 1 point, drawing gives 1/2 and losing gives 0. If the
score after the two rounds is tied the match will be decided by
sudden death.

Player 1 has the opportunity of adapting his strategy by
selecting to play either timid or bold,

» Timid: Draws with probability p; and loses with probability
1 — p4 (no chance of winning)
» Bold: Wins with probability p,, and loses with probability

1 — pw (no chance of drawing)
Two round chess match

Player 1 is thus faced with the problem of finding the strategy
that maximizes his probability of winning the match.

Open-loop strategy

With an open-loop strategy Player 1 has to decide beforehand
how to play in each round.

1. Timid-timid: Probability p2p,, of winning the match

2. Bold-bold: Probability pZ + 2pZ(1 — pw) = p2(3 — 2py) of
winning the match

3. Timid-bold: Probability pgp., + (1 — pg)pZ of winning match

4. Bold-timid: Probability p,pgq + p2(1 — pg) of winning match

Open-loop win probability = max(p2 (3 — 2py,), Pwpa + P2 (1 — pa))
= Py + Pu(1 — pu) max(2pu, pa)
Optimal open loop strategy:
> pgq > 2py,: Timid-bold or bold-timid

> pa < 2py,: Bold-bold
> pq = 2py,: All except timid-timid are optimal

Closed-loop strategy

Here we start with a bold strategy in the first round and choose

1. Bold-timid: If score is 1-0 after Round 1
2. Bold-bold: If score is 0-1 after Round 1

Closed-loop probability of win = p,pg + p2 (1 — pa) + (1 — pw)p2

= pi +pw(1 _pw)(pw +pd)
Comparing with the open-loop case gives
Value of information =p?2 + p, (1 — pw) (Pw + Pa)

— P} — Puw(1l — pw) max(2py, pa)
=pw(1 - pw) min(pwapd - pw)

The dynamic programming algorithm

Now,

N-1
Vi(xr) = E |gn(an) + > g5, 45 (x5),w))
Jj=k

The Bellman equation

For every initial state x, the optimal cost J*(x) is given by the
last step in the following backward-recursion.

Vi(xx) = min E[gz(xp, up, wr) + Vg1 (fr(xp, ur, we))]
ur€ U (xr)

Vn(xn) = gn(xn)

We get the optimal control “for-free”

Uy (xx) = argmin E [gr(xz, ur, wr) + Ver1(fr(xz, uz, we))]
ur€ Up(az)

Example: Selling an asset

Optimal asset selling

Consider a person having an asset that has to sell within N
time periods. Every time period he gets a new offer, that he can
either accept or reject. These offers are given by a sequence of
independent random variables wy, w1, ...,wy_1. When the
seller accepts an offer he can invest the money at fixed interest
rate r > 0. The sellers objective is to maximize the revenue at
day N.

» We let u;, = 0 represent rejecting to & offer and u;, = 1
when accepting offer &

» We also introduce the terminal state T that x;, enters once
the asset is sold and get the state equation
xpt1 = f(xp, wr), where

f(xr,we) = {

wy, otherwise.

T ifxy =T (sold), orif x;, # T and u;, = 1 (sell),

Example: Selling an asset

» The corresponding reward function may be written as

N-1
E|gn(xn)+) gk(xk,uk’wk):|
k=i
where
xy ifx T
gn(xn) = {ON if xx i T.
and

1+r)N~ky, ifx T and u;, = 1 (sell),
9n(x, up, wp) = {E) o othkerfvise. Pl

Example: Selling an asset

» This gives the DP algorithm

_ JXN if XN 75 T
Viv(en) = {0 ifay =T
and
N-k
Vi) = {glax{(l + e BlVia(onl) 52 T

» We thus get the policy

= 1 ifxp>ap
k= 0 ifx, <o,

where
an = EVir1(w)]
EE A)N

Example: Selling an asset

» Let us now assume that the w, are identically distributed

> Introduce the functions Gy (x;) = (1 + r)* =¥V, (x;), hence
for xy,x, # T

Gy(xn) = xN
Gp(xr) = max{xs, (1 + r)_lE[Gk+1(w)]}
and
o — ElGra()]
k 1+r

» Now GN,l(x) > GN(x) and if Gj+1(x) > Gj+2(x) then

Gj(x) > Gj41(x), hence by induction G(x) > G41(x) for

k=0,...,N—-1
» This shows that ;. is a decreasing sequence

Example: Selling an asset

» To compute the sequence « we note that
Gk(xk) = max{xk,(xk}, hence

1
ap = mE[Gk+1(w)]
1 o0
= < _—
Pl S @l + / | ol

» Since by definition)y = 0 this gives a recursion for oy,
k=1,...,.N

Example: Selling an asset

» Assume that w is Exp(1) distributed i.e. f;,(x) = e™*
» We have Plw < arp1] = 1 — e %#+1 and

/ xfw(x)dx = e (g1 + 1)
a

k+1

» This gives the recursion

1
oy = 7(Zk+1(1 — e_ak“) +

~®rt1(p 1
1+r ¢ (@k41+1)

1+r

1 a
= o R R+1
1+r(1t e)

Example: Selling an asset

T ACCEPT

REJECT

The figure shows the optimal policy for r = 0.01 and N = 20.

Optimal stopping

» Optimal stopping problems are a special case of the basic
problem in which the control can only take two values e.g.
{0, 1} one of which renders the cost (reward) ¢(x) and
makes the system enter an absorbing terminal state T'
after which no further cost is incurred

» The Dynamic programming algorithm for optimal stopping
problems can be written

Vn(xn) = on(xn)
Vi (xr) = min{gr(xz), E [Viya (£ (xr, wr))]}
» For optimal stopping problems we can define a set

Tr = {x: ¢r(x) < E[Vii1(f (xp,wz))]} called the
termination set

Optimal stopping: The one-stage look-ahead rule

» Sometimes extracting the optimal policy by backward
iteration in the DP algorithm is complex

» For a specific type of problems we do not need to solve the

DP however
> Define the set S = {(k,x) : 9(x) < E [Ps1(f (xwi))]}

> If (k,xz) € S it is better to stop now than to continue and
stop in the next step

» Assume that the set S is absorbing in the sense that
(kB +1, f(xp,wz)) € S whenever (k,x;) € S
» Then it is optimal to stop iff (k,x;) € S.

