Lecture 10 — Optimal Control

» Introduction
» Static Optimization with Constraints

» Optimization with Dynamic Constraints

\4

The Maximum Principle

» Examples

Material

> Lecture slides
» References to Glad & Ljung, part of Chapter 18

» D. Liberzon, Calculus of Variations and Optimal Control
Theory: A concise Introduction, Princeton University Press,
2010 (linked from course webpage)

Goal for Lecture 10-11

To be able to

» solve simple optimal control problems by hand

» formulate advanced problems for numerical solution

using the maximum principle

Optimal Control Problems

Idea: Formulate the design problem as optimization problem

+ Gives systematic design procedure

+ Can use on nonlinear models

+ Can capture limitations etc as constraints
— Hard to find suitable criterium?!

— Can be hard to find the optimal controller

Solutions will often be of “bang-bang” character if control signal is
bounded, compare lecture on sliding mode controllers.

The beginning

» John Bernoulli: The brachistochrone problem 1696

Let a particle slide along a frictionless curve. Find the curve
that takes the particle from A to B in shortest time

d.: d,
v =g(1 —y), ic:USiIl@7 L~

ds ds
Find y(x), with y(0) =1 and y(1) = 0 given, that minimizes

0= s
ny

» Solved by John and James Bernoulli, Newton, I'Hospital
» Euler: Isoperimetric problems

» Example: The largest area covered by a curve of given length
is a circle [see also Dido/cow-skin/Carthage].

Optimal Control

» The space race (Sputnik 1957)

» Putting satellites in orbit

» Trajectory planning for interplanetary travel
» Reentry into atmosphere

» Minimum time problems

» Pontryagin's maximum principle, 1956

» Dynamic programming, Bellman 1957

» Vitalization of a classical field

An example: Goddard’s Rocket Problem (1910)

How to send a rocket as high up in the air as possible?

v u—D _
g
d m
Fr h| = 2
m —yu

h

where u = motor force, D(v, h) = air resistance, m = mass.
Constraints
0 < u < umag, m(tf) > my

Criterium
Maximize h(ty), Ly given

Goddard’s Problem

Can you guess the solution when D(v, h) = 0?

Much harder when D(v, h) # 0
Can be optimal to have low v when air resistance is high. Burn

fuel at higher level.

Took about 50 years before a complete solution was found.

Read more about Goddard at http://www.nasa.gov/centers/goddard/




Optimal Control Problem. Constituents

Outline

Control signal u(t),0 <t < tf

Criterium h(tys).

Differential equations relating h(ts) and u
Constraints on u

Constraints on x(0) and z(t)

ty can be fixed or a free variable

o Introduction
e Static Optimization with Constraints
o The Maximum Principle

o Examples

Preliminary: Static Optimization

Minimize g1 (x,u) over x € R™ and u € R™ s.t. ga(x,u) = 0.
(Assume ga(z,u) =0 = dga(z,u)/dz non-singular)

Lagrangian: Lz, u,A) = g1(z,u) + A ga(z, u)

Local minima of g1 (z, u) constrained on gz(z,u) = 0 can be
mapped into critical points of L(x,u, \)

Necessary conditions for local minimum

oL oL oL
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Sufficient condition for local minimum

Example - static optimization

Minimize
2 2
g1(z1,72) = 21 + 73

with the constraint that

go(w1,22) =21 -20—1=0

0’L

5 >0 . .
Ou Level curves for constant g; and the constraint g, = 0, repectively.
Outline Problem Formulation (1)
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Standard form (1):
Trajectory cost Final cost
U e — —
Minimize / T(@(0), () dt + d(a(ty))
0
where
z(t) e R", u(t)eUCR™

i(t) = f(z(t),u®),  «(0) ==
0<t<ty, Ly given

Here we have a fixed end-time ¢;. This will be relaxed later on.

The Maximum Principle (18.2)

Introduce the Hamiltonian
H(x,u,\) = L(z,u) + A (t) f (z, u).
Assume optimization (1) has a solution {u*(¢),z*(¢)}. Then

i[leill]lH(.’L‘*(t),u,A(t)) = H(z"(t),u"(t),A(t), 0<t<ty,

where A(t) solves the adjoint equation

% = —HI(@*(t),u(t),\(t)), with A(ty) = ¢l (x*(ts))

Notation
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Remarks

Idea: note that every change of u(t) from the suggested optimal
u*(t) must lead to larger value of the criterium.

Should be called “minimum principle”

A(t) are called the adjoint variables or co-state variables




Proof Sketch

Optimal Control Problem

t

muinJ:muin{qb(I(tf))Jr/tf

0

L(x,u) dt}
subject to
j::f(m,u), I(tO)Z‘TU
H(z,u,\) = L(z,u) + AT f(2,u) gives
tf

J = dla(ty) + / (La,u) + NT(f — #)) db

= otateg) - Walf+ [ (155

The second equality is obtained using "integration by parts”.

Proof Sketch Cont'd

Variation of J:
123 .
8 = K% - AT> 54 +/ Ka—H + AT> 52+ 2 54
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Necessary conditions for local minimum (6. = 0)
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> ) specified at t =ty and w at t = #g
» Two Point Boundary Value Problem (TPBV)

. . 92
» For sufficiency % >0
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Remarks

The Maximum Principle gives necessary conditions

A pair (u*(-),z*()) is called extremal the conditions of the
Maximum Principle are satisfied. Many extremals can exist.

The maximum principle gives all possible candidates.

However, there might not exist a minimum!
Example

Minimize x(1) when &(t) = u(t), z(0) = 0 and u(t) is free

Why doesn’t there exist a minimum?

Outline
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Example—Boat in Stream

- min — 21(T)
T = ’U(aﬁz) —+ uq
v(xa) iy = uy
— z1(0) =0
- .’172(0) =0
- 1 utt+u=1

Speed of water v(z3) in x; direction. Move maximum distance in
x1-direction in fixed time T’

Assume v linear so that v/(zg) = 1

Solution

Hamiltonian:

H=0+Mf=[\ X [f

1:| =\ (’U(Iz) + ul) + Aous
fa

Adjoint equation:

o] = [orram] = vgan] =[]

with boundary conditions

(o) =[] = [

This gives \i(t) = —1, Xo(t)=t—T

Solution

Optimality: Control signal should solve

min )\1(1)(1‘2) + ul) + Aauo

u% +u§ =1

Minimize Ajuy + Aqug so that (u1,us2) has length 1

ui(t) = —)\17“) un(t) = _)‘27(25)
M) +X5(0) HOESY0)
i (t) = ! w(t) = ——L—1

See fig 18.1 for plots

Remark: It can be shown that this optimal control problem has a minimum.

Hence it must be the one we found, since this was the only solution to MP

5 min exercise

Solve the optimal control problem

1
min/ utdt + x(1)
0
T=-r+u
z(0) =0




5 min exercise - solution

Compare with standard formulation:
tr=1 L=ut o=z fl@)y=—-z+4+u
Need to introduce one adjoint state
Hamiltonian:
H=L+X f=u*+\-z+u)
Adjoint equation:

d\ _ oH

= = (N = At)=C¢
Aty) = %ﬁ =1 =A='

At optimality:

H
0=6—=4u3+A
ou

= )= VA= {0

Goddard’s Rocket Problem revisited

How to send a rocket as high up in the air as possible?

(v(0),2(0),m(0)) = (0,0,m0), g,7 >0
u motor force, D = D(v, h) air resistance

Constraints: 0 < % < Upae and m(ty) = my (empty)

Optimization criterion: max;, ., h(ts)

Problem Formulation (2)

t;>0
wl0)tf]—U

i(t) = f(z(t),u®), 2(0) =0
¢(tfvx(tf)) =0

Note the differences compared to standard form:

min /0 " L(a(t), ut)) dt + (25, (1))

> ty free variable (i.e., not specified a priori)
> 7 end constraints

Wity 2(tf))
U(ty,z(ty)) = : =0
W (ty, z(tr))
> time varying final penalty, ¢(ts,z(ty))

The Maximum Principle will be generalized in the next lecture!

Summary
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