
Lecture 10 — Optimal Control

◮ Introduction

◮ Static Optimization with Constraints

◮ Optimization with Dynamic Constraints

◮ The Maximum Principle

◮ Examples

Material

◮ Lecture slides

◮ References to Glad & Ljung, part of Chapter 18

◮ D. Liberzon, Calculus of Variations and Optimal Control
Theory: A concise Introduction, Princeton University Press,
2010 (linked from course webpage)

Goal for Lecture 10-11

To be able to

◮ solve simple optimal control problems by hand

◮ formulate advanced problems for numerical solution

using the maximum principle

Optimal Control Problems

Idea: Formulate the design problem as optimization problem

+ Gives systematic design procedure

+ Can use on nonlinear models

+ Can capture limitations etc as constraints

– Hard to find suitable criterium?!

– Can be hard to find the optimal controller

Solutions will often be of “bang-bang” character if control signal is
bounded, compare lecture on sliding mode controllers.

The beginning

◮ John Bernoulli: The brachistochrone problem 1696

Let a particle slide along a frictionless curve. Find the curve
that takes the particle from A to B in shortest time
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v2 = g(1− y),
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= v sin θ,
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ds
= −v cos θ

Find y(x), with y(0) = 1 and y(1) = 0 given, that minimizes

J(y) =

∫ 1

0

√
1 + y′(x)2√
2gy(x)

dx

◮ Solved by John and James Bernoulli, Newton, l’Hospital
◮ Euler: Isoperimetric problems

◮ Example: The largest area covered by a curve of given length
is a circle [see also Dido/cow-skin/Carthage].

Optimal Control

◮ The space race (Sputnik 1957)

◮ Putting satellites in orbit

◮ Trajectory planning for interplanetary travel

◮ Reentry into atmosphere

◮ Minimum time problems

◮ Pontryagin’s maximum principle, 1956

◮ Dynamic programming, Bellman 1957

◮ Vitalization of a classical field

An example: Goddard’s Rocket Problem (1910)

How to send a rocket as high up in the air as possible?
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m
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m

where u = motor force, D(v, h) = air resistance, m = mass.

Constraints
0 ≤ u ≤ umax, m(tf ) ≥ m1

Criterium
Maximize h(tf ), tf given

Goddard’s Problem

Can you guess the solution when D(v, h) = 0?

Much harder when D(v, h) 6= 0

Can be optimal to have low v when air resistance is high. Burn
fuel at higher level.

Took about 50 years before a complete solution was found.

Read more about Goddard at http://www.nasa.gov/centers/goddard/
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Optimal Control Problem. Constituents

Control signal u(t), 0 ≤ t ≤ tf

Criterium h(tf ).

Differential equations relating h(tf ) and u

Constraints on u

Constraints on x(0) and x(tf )

tf can be fixed or a free variable

Outline

◦ Introduction

• Static Optimization with Constraints

◦ The Maximum Principle

◦ Examples

Preliminary: Static Optimization

Minimize g1(x, u) over x ∈ Rn and u ∈ Rm s.t. g2(x, u) = 0.
(Assume g2(x, u) = 0 ⇒ ∂g2(x, u)/∂x non-singular)

Lagrangian: L(x, u, λ) = g1(x, u) + λT g2(x, u)

Local minima of g1(x, u) constrained on g2(x, u) = 0 can be
mapped into critical points of L(x, u, λ)

Necessary conditions for local minimum

∂L
∂x

= 0
∂L
∂u

= 0

(
∂L
∂λ

= g2(x, u) = 0

)

Sufficient condition for local minimum

∂2L
∂u2

> 0

Example - static optimization

Minimize
g1(x1, x2) = x21 + x22

with the constraint that

g2(x1, x2) = x1 · x2 − 1 = 0
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Level curves for constant g1 and the constraint g2 = 0, repectively.
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Problem Formulation (1)

Standard form (1):

Minimize

∫ tf

0

Trajectory cost︷ ︸︸ ︷
L(x(t), u(t)) dt+

Final cost︷ ︸︸ ︷
φ(x(tf ))

where

x(t) ∈ Rn, u(t) ∈ U ⊆ Rm

ẋ(t) = f(x(t), u(t)), x(0) = x0

0 ≤ t ≤ tf , tf given

Here we have a fixed end-time tf . This will be relaxed later on.

The Maximum Principle (18.2)

Introduce the Hamiltonian

H(x, u, λ) = L(x, u) + λT (t)f(x, u).

Assume optimization (1) has a solution {u∗(t), x∗(t)}. Then

min
u∈U

H(x∗(t), u, λ(t)) = H(x∗(t), u∗(t), λ(t)), 0 ≤ t ≤ tf ,

where λ(t) solves the adjoint equation

dλ

dt
= −HT

x (x
∗(t), u∗(t), λ(t)), with λ(tf ) = φTx (x

∗(tf ))

Notation

Hx =
∂H

∂x
=

(
∂H

∂x1

∂H

∂x2
. . .

)

Remarks

Idea: note that every change of u(t) from the suggested optimal
u∗(t) must lead to larger value of the criterium.

Should be called “minimum principle”

λ(t) are called the adjoint variables or co-state variables
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Proof Sketch

Optimal Control Problem

min
u
J = min

u

{
φ(x(tf )) +

∫ tf

t0

L(x, u) dt

}

subject to
ẋ = f(x, u), x(t0) = x0

H(x, u, λ) = L(x, u) + λT f(x, u) gives

J = φ(x(tf )) +

∫ tf

t0

(
L(x, u) + λT (f − ẋ)

)
dt

= φ(x(tf ))−
[
λTx

]tf
t0
+

∫ tf

t0

(
H + λ̇Tx

)
dt

The second equality is obtained using ”integration by parts”.

Proof Sketch Cont’d

Variation of J :

δJ =

[(
∂φ

∂x
− λT

)
δx

]

t=tf

+

∫ tf

t0

[(
∂H

∂x
+ λ̇T

)
δx+

∂H

∂u
δu

]
dt

Necessary conditions for local minimum (δJ = 0)

λ(tf )
T =

∂φ

∂x

∣∣∣∣
t=tf

λ̇T = −∂H
∂x

∂H

∂u
= 0

◮ λ specified at t = tf and x at t = t0

◮ Two Point Boundary Value Problem (TPBV)

◮ For sufficiency ∂2H
∂u2 ≥ 0

Remarks

The Maximum Principle gives necessary conditions

A pair (u∗(·), x∗(·)) is called extremal the conditions of the
Maximum Principle are satisfied. Many extremals can exist.

The maximum principle gives all possible candidates.

However, there might not exist a minimum!

Example

Minimize x(1) when ẋ(t) = u(t), x(0) = 0 and u(t) is free

Why doesn’t there exist a minimum?

Outline
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◦ The Maximum Principle

• Examples

Example–Boat in Stream

x1

x2

v(x2)

min − x1(T )
ẋ1 = v(x2) + u1
ẋ2 = u2
x1(0) = 0
x2(0) = 0
u21 + u22 = 1

Speed of water v(x2) in x1 direction. Move maximum distance in
x1-direction in fixed time T

Assume v linear so that v′(x2) = 1

Solution

Hamiltonian:

H = 0 + λT f =
[
λ1 λ2

] [f1
f2

]
= λ1(v(x2) + u1) + λ2u2

Adjoint equation:

[
λ̇1
λ̇2

]
=

[
−∂H/∂x1
−∂H/∂x2

]
=

[
0

−v′(x2)λ1

]
=

[
0

−λ1

]

with boundary conditions

[
λ1(T )
λ2(T )

]
=

[
∂φ/∂x1|x=x∗(tf )

∂φ/∂x2|x=x∗(tf )

]
=

[
−1
0

]

This gives λ1(t) = −1, λ2(t) = t− T

Solution

Optimality: Control signal should solve

min
u2
1+u2

2=1
λ1(v(x2) + u1) + λ2u2

Minimize λ1u1 + λ2u2 so that (u1, u2) has length 1

u1(t) = − λ1(t)√
λ21(t) + λ22(t)

, u2(t) = − λ2(t)√
λ21(t) + λ22(t)

u1(t) =
1√

1 + (t− T )2
, u2(t) =

T − t√
1 + (t− T )2

See fig 18.1 for plots

Remark: It can be shown that this optimal control problem has a minimum.

Hence it must be the one we found, since this was the only solution to MP

5 min exercise

Solve the optimal control problem

min

∫ 1

0
u4dt+ x(1)

ẋ = −x+ u

x(0) = 0
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5 min exercise - solution

Compare with standard formulation:

tf = 1 L = u4 φ = x f(x) = −x+ u

Need to introduce one adjoint state

Hamiltonian:

H = L+ λT · f = u4 + λ(−x+ u)

Adjoint equation:

dλ

dt
= −∂H

∂x
= −(−λ) =⇒ λ(t) = Cet

λ(tf ) =
∂φ

∂x
= 1 =⇒ λ(t) = et−1

At optimality:

0 =
∂H

∂u
= 4u3 + λ

=⇒ u(t) = 3
√
−λ(t)/4 = 3

√
−e(t−1)/4

Goddard’s Rocket Problem revisited

How to send a rocket as high up in the air as possible?

d

dt



v
h
m


 =



u−D

m
− g

v
−γu




h

m

(v(0), h(0),m(0)) = (0, 0,m0), g, γ > 0
u motor force, D = D(v, h) air resistance

Constraints: 0 ≤ u ≤ umax and m(tf ) = m1 (empty)

Optimization criterion: maxtf ,u h(tf )

Problem Formulation (2)

min
tf≥0

u:[0,tf ]→U

∫ tf

0
L(x(t), u(t)) dt+ φ(tf , x(tf ))

ẋ(t) = f(x(t), u(t)), x(0) = x0

ψ(tf , x(tf )) = 0

Note the differences compared to standard form:

◮ tf free variable (i.e., not specified a priori)
◮ r end constraints

Ψ(tf , x(tf )) =



Ψ1(tf , x(tf ))

...
Ψr(tf , x(tf ))


 = 0

◮ time varying final penalty, φ(tf , x(tf ))

The Maximum Principle will be generalized in the next lecture!

Summary

◦ Introduction

◦ Static Optimization with Constraints

◦ Optimization with Dynamic Constraints

◦ The Maximum Principle

◦ Examples
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