
Lecture 8 — Backlash and Quantization

Today’s Goal:

◮ To know models and compensation methods for backlash

◮ Be able to analyze the effect of quantization errors

Quantizer
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Material

◮ Lecture slides

Note: We are using analysis methods from previous lectures (describing
functions, small gain theorem etc.), and these have references to the
course book(s).

Linear and Angular Backlash
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Example: Parallel Kinematic Robot

Gantry-Tau robot: Need backlash-free gearboxes for high precision

EU-project: SMErobot
TM

www.smerobot.org

Backlash

Backlash (glapp) is

◮ present in most mechanical and hydraulic systems

◮ increasing with wear

◮ bad for control performance

◮ may cause oscillations

Note: A gear box without any backlash will not work if
temperature rises

Dead-zone Model

xin − xout
(θin − θout)

D

Force
(Torque)

◮ Often easier to use model of the form xin(·) → xout(·)
◮ Uses implicit assumption: Fout = Fin, Tout = Tin. Can be

wrong, especially when “no contact”.

The Standard Model

Assume instead

◮ ẋout = ẋin when “in contact”

◮ ẋout = 0 when “no contact”

◮ No model of forces or torques needed/used

xin
θin

D

D

xout
θout

Servo motor with Backlash

P-control of servo motor

+
θref u θ̇in θin θoutb

1+sT
1
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K

How does the values of K and D affect the behavior?
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Effects of Backlash
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Oscillations for K = 4 but not for K = 0.25 or K = 1. Why?

Limit cycle becomes smaller if D is made smaller, but it never
disappears

Describing Function for a Backlash
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If A > d then
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else N(A) = 0.

1 minute exercise

Study the plot for the describing function for the backlash on the
previous slide.

Where does the function − 1

N(A)
end for A → ∞ and why?

Describing Function Analysis
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K = 0.25

K = 1
K = 4

−1/N(A)
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Input and output of backlash

◮ For K = 4, D = 0.2: intersection between G(jω) and
−1/N(A) occurs for A = 0.33, ω = 1.24

◮ Simulation: A = 0.33, ω = 2π/5.0 = 1.26
Describing function predicts oscillation well!

Limit cycles?

The describing function method is only approximate.

Can one determine conditions that guarantee stability?

+
u θ̇in θin θoutb

1+sT
1
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Note: θin and θout will not converge to zero

Idea: Consider instead θ̇in and θ̇out

Backlash Limit Cycles

Rewrite the system as

G(s)

θin θout

G(s)

θ̇in θ̇out
“BL”

Note that the block “BL” satisfies

θ̇out =

{
θ̇in in contact
0 otherwise

Analysis by small gain theorem

Backlash block has gain ≤ 1 (from θ̇in to θ̇out)

Hence closed loop is BIBO stable provided that

G(s) is asymptotically stable and |G(iω)| < 1 for all ω

Analysis by circle criterion

Backlash map from θ̇in to θ̇out is in the sector [0, 1].

−1/k1 = ∞ and −1/k2 = −1

Hence closed loop is stable if Re G(iω) > −1 for all ω.

(For our motor example this proves stability when K < 1)

2



Backlash compensation

◮ Mechanical solutions

◮ Dead-zone

◮ Linear controller design

◮ Backlash inverse

Linear Controller Design

Introduce phase lead to avoid the −1/N(A) curve:

Instead of only a P-controller we choose K(s) = k 1+sT2
1+sT1

+
u θ̇in θin θoutb

1+sT
1
s

−1

k 1+sT2
1+sT1

Controller K(s) = k 1+sT2
1+sT1

Simulation with T1 = 0.5, T2 = 2.0
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with filter

without filter

No limit cycle, oscillation removed!

Backlash Inverse

xin

D

D

xout

u xin xout

Idea: Let xin jump ±2D when ẋout should change sign. Works if
the backlash is directly on the system input!

Backlash Inverse

D̂

−D̂

u

xin

xin(t) =





u+ D̂ if u(t) > u(t−)

u− D̂ if u(t) < u(t−)
xin(t−) otherwise

If

◮ D̂ = D then xout(t) = u(t) (perfect compensation)

◮ D̂ < D: Under-compensation (decreased backlash)

◮ D̂ > D: Over-compensation, often gives oscillations

Example–Perfect compensation

Motor with backlash on input, PD-controller
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Backlash–More advanced models

Warning: More detailed models needed sometimes

Model what happens when contact is attained

Model external forces that influence the backlash

Model mass/moment of inertia of the backlash.

Example: Parallel Kinematic Robot

Gantry-Tau robot:
Need backlash-free gearboxes for very high precision

EU-project: SMErobot
TM

http://www.smerobot.org

”Rotational to Linear motion”

Rack-and-pinion
(Swe. “kuggstng”)

Gear box

Motor connects

here

Backlash in gearbox and rails

Remedy:
Use two motors in opposite directions: One motor can act as
spring and brake to ”reduce” backlash. Need measurements on
both motor and arm-side.

Backlash compensation

From master thesis by B. Brochier, Control of a Gantry-Tau Structure, LTH, 2006
See also master theses by j. Schiffer and L. Halt, 2009.

Quantization
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How accurate should the converters be? (8-14 bits?)

What precision is needed in computations? (8-64 bits?)

◮ Quantization in A/D and D/A converters

◮ Quantization of parameters

◮ Roundoff, overflow, underflow in operations

NOTE: Compare with (different) limits for “quantizer/dead-zone

relay” in Lecture 6.

Linear Model of Quantization

Model the quantization error as a stochastic signal e independent
of u with rectangular distribution over the quantization size.

Works if quantization level is small compared to the variations in u

yy uu

e

Q +

Rectangular noise distribution over [−D
2 ,

D
2 ] has the variance

V ar(e) =

∫ +∞

−∞
e2fe de =

∫ D/2

−D/2
e2

1

D
de =

D2
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Describing Function for Deadzone Relay
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Lecture 6 ⇒

N(A) =
4

πA

√
1−D2/A2 for A > D and zero otherwise
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Describing Function for Quantizer
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N(A) =
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2
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2 D

(See exercise)

Describing Function for Quantizer
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The maximum value is 4/π ≈ 1.27 for A ≈ 0.71D.

Predicts limit cycle if Nyquist curve intersects negative real axis to
the left of −π/4 ≈ −0.79.

Should design for gain margin ¿ 1/0.79= 1.27!

Note that reducing D only reduces the size of the limit oscillation,
the oscillation does not vanish completely.

5 minute exercise
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How does the shape of the describing function relate to the
number of possible limit cycles and their stability.

What if the Nyquist plot

◮ intersects the negative real axis at −0.80?

◮ intersects the negative real axis at −1?

◮ intersects the negative real axis at −2?

Example – Motor with P-controller.

Roundoff at input, D = 0.2. Nyquist curve intersects at −0.5K.
Hence stable for K < 2 without quantization. Stable oscillation
predicted for K > 2/1.27 = 1.57.
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Example – Double integrator with 2nd order controller
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Quantization at A/D converter

Double integrator with 2nd order controller, D = 0.02
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Describing function: Ay ≈ D/2 = 0.01, period T = 39

Simulation: Ay = 0.01 and T = 28

Quantization at D/A converter

Double integrator with 2nd order controller, D = 0.01
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Describing function: Au ≈ D/2 = 0.005, period T = 39
Simulation: Au = 0.005 and T = 39
Better prediction, since more sinusoidal signals

Quantization Compensation

◮ Use improved converters, (small quantization errors/larger
word length)

◮ Linear design, avoid unstable controller, ensure gain
margin¿1.3

◮ Use the tracking idea from
anti-windup to improve
D/A converter

controller D/A
Digital Analog

+ −

◮ Use analog dither,
oversampling and digital
low-pass filter to improve
accuracy of A/D converter

A/D filter decim.+
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Today’s Goal

◮ To know models and compensation methods for backlash

◮ Be able to analyze the effect of quantization errors

Quantizer
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No More Lecture This Week!

Next time on Friday next week: November 25
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