
Lecture 6 — Describing function analysis

Today’s Goal: To be able to

◮ Derive describing functions for static nonlinearities

◮ Predict stability and existence of periodic solutions through
describing function analysis

Material:

◮ Chapter 14 in Glad & Ljung

◮ Chapter 7.2 (pp.280–290) in Khalil

◮ Lecture notes

Course Outline

Lecture 1-3 Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 2-6 Analysis methods
(Lyapunov, circle criterion, describing functions)

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary

Example: saturated sinusoidals

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

4

time [s]

in
pu

t s
ig

na
l

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time [s]

ou
tp

ut
 s

ig
na

l

Sine Wave ScopeSaturation

The “effective gain” ( the ratio
sat(A sinωt)

A sinωt
) varies with the

input signal amplitude A.

Motivating Example
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4

s(s+ 1)2
and u = sat (e) gives stable oscillation for r = 0.

◮ How can the oscillation be predicted?

Q: What is the amplitude/topvalue of u and y? What is the frequency?

Recall the Nyquist Theorem

Assume G(s) stable. For what frequency ω and gain k is

k ·G(iω) = −1?

0 e u y

− k G(s) −1/k

G(iω)

Motivating Example (cont’d)

Heuristic reasoning:
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Let N(A) be a complex number such that
f(A sinωt) ≈ |N(A)|A sin[ωt+ argN(A)].

Heuristic reasoning: For what frequency and what amplitude is
”the loop gain” N(A) ·G(iw) = −1?

The intersection of the −1/N(A) and the Nyquist curve G(iω)
predicts amplitude and frequency.

◮ How do we derive the describing function N(A)?

◮ Does the intersection predict a stable oscillation?

◮ Are the estimated amplitude and frequency accurate?

Fourier Series

Every periodic function u(t) = u(t+ T ) has a Fourier series
expansion

u(t) =
a0
2

+
∞∑

n=1

(an cosnωt+ bn sinnωt)

=
a0
2

+
∞∑

n=1

√
a2n + b2n sin[nωt+ arctan(an/bn)]

where ω = 2π/T and

an =
2

T

∫ T

0

u(t) cosnωt dt bn =
2

T

∫ T

0

u(t) sinnωt dt

Note: Sometimes we make the change of variable t → φ/ω
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The Fourier Coefficients are Optimal

The finite expansion

ûk(t) =
a0
2

+
k∑

n=1

(an cosnωt+ bn sinnωt)

solves

min
{ân,b̂n}1≤n≤k

2

T

∫ T

0

[
u(t)− ûk(t)

]2
dt T =

2π

ω

if {an, bn} are the Fourier coefficients.

The Key Idea

0 e u y

−
N.L. G(s)

Assume e(t) = A sinωt and u(t) periodic. Then

u(t) =
a0
2

+
∞∑

n=1

√
a2n + b2n sin[nωt+ arctan(an/bn)]

If |G(inω)| ≪ |G(iω)| for n = 2, 3, . . . and a0 = 0, then

y(t) ≈ |G(iω)|
√

a21 + b21 sin[ωt+ arctan(a1/b1) + argG(iω)]

Find periodic solution by matching coefficients in y = −e.

Definition of Describing Function

The describing function of
e(t) u(t)

N.L. is

N(A,ω) :=
b1(ω) + ia1(ω)

A

a1(ω) :=
ω

π

∫ 2π/ω

0
u(t) cos(ωt)dt b1(ω) :=

ω

π

∫ 2π/ω

0
u(t) sin(ωt)dt

where u(t) is the output corresponding to e(t) := A sin(ωt)

If G is low pass and a0 = 0, then

û1(t) = |N(A,ω)|A sin[ωt+ argN(A,ω)]

can be used instead of u(t) to analyze the system.

Amplitude dependent gain and phase shift!

e(t) = A sinωt = Im (Aeiωt)

e(t) u(t)
N.L. u(t) =

a0
2

+
∞∑

n=1

(an cosnωt+ bn sinnωt)

e(t) u1(t)
N(A,ω)

u1(t) = a1 cos(ωt) + b1 sin(ωt)

= Im (N(A,ω)Aeiωt)

where the describing function is defined as

N(A,ω) =
b1(ω) + ia1(ω)

A
=⇒ U(iω) ≈ N(A,ω)E(iω)

Existence of Limit Cycles

0 e u y

− f(·) G(s)

−1/N(A)

A

G(iω)

y = G(iω)u ≈ −G(iω)N(A)y ⇒ G(iω) = − 1

N(A)

The intersections of G(iω) and −1/N(A) give ω and A for
possible limit cycles.

Describing Function for a Relay
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a1 =
1

π

∫ 2π

0
u(φ) cosφ dφ = 0

b1 =
1

π

∫ 2π

0
u(φ) sinφ dφ =

2

π

∫ π

0
H sinφ dφ =

4H

π

The describing function for a relay is thus N(A) =
4H

πA
.

Describing Function for Odd Static Nonlinearities

Assume f(·) and g(·) are odd static nonlinearities (i.e.,
f(−e) = −f(e)) with describing functions Nf and Ng. Then,

• ImNf (A,ω) = 0, coeff. (a1 ≡ 0)
• Nf (A,ω) = Nf (A)
• Nαf (A) = αNf (A)
• Nf+g(A) = Nf (A) +Ng(A)

Limit Cycle in Relay Feedback System
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G(s)
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G(s) =
3

(s+ 1)3
with feedback u = −sgn y

−3/8 = −1/N(A) = −πA/4 ⇒ A = 12/8π ≈ 0.48

G(iω) = −3/8 ⇒ ω =
√
3 ≈ 1.7, T = 2π/ω ≈ 3.6
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Limit Cycle in Relay Feedback System (cont’d)

The prediction via the describing function agrees very well with the
true oscillations:
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G filters out almost all higher-order harmonics.

Describing Function for a Saturation
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Let e(t) = A sinωt = A sinφ. First set H = D. If A ≤ D then
N(A) = 1, if A > D then for φ ∈ (0, π)

u(φ) =

{
A sinφ, φ ∈ (0, φ0) ∪ (π − φ0, π)
D, φ ∈ (φ0, π − φ0)

where φ0 = arcsinD/A.

Describing Function for a Saturation (cont’d)

a1 =
1

π

∫ 2π

0
u(φ) cosφ dφ = 0

b1 =
1

π

∫ 2π

0
u(φ) sinφ dφ =

4

π

∫ π/2

0
u(φ) sinφ dφ

=
4A

π

∫ φ0

0
sin2 φ dφ+

4D

π

∫ π/2

φ0

sinφ dφ

=
A

π

(
2φ0 + sin 2φ0

)

Describing Function for a Saturation (cont’d)

If H = D

N(A) =
1

π

(
2φ0 + sin 2φ0

)
, A ≥ D

For H 6= D the rule Nαf (A) = αNf (A) gives

N(A) =
H

Dπ

(
2φ0 + sin 2φ0

)
, A ≥ D
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N(A) for H = D = 1

NOTE: dependance of A shows up

in φ0 = arcsinD/A

3 minute exercise:

What oscillation amplitude and frequency do the describing
function analysis predict for the “Motivating Example”?

The Nyquist Theorem

Assume G(s) stable, and k is positive gain.

◮ The closed-loop system is unstable if the point −1/k is
encircled by G(iω)

◮ The closed-loop system is stable if the point −1/k is not
encircled by G(iω)

0 e u y

− k G(s) −1/k

G(iω)

How to Predict Stability of Limit Cycles

Assume G(s) stable. For a given A = A0:

◮ A increases if the point −1/Nf (A0) is encircled by G(iω)

◮ A decreases otherwise

0 e u y

−
f G(s)

−1/N(A)

G(iω)

A stable limit cycle is predicted

How to Predict Stability of Limit Cycles

−1/N(A)

G(Ω)

An unstable limit cycle is predicted

An intersection with amplitude A0 is unstable if A < A0 gives
decreasing amplitude and A > A0 gives increasing.
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Stable Periodic Solution in Relay System
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(s+ 1)3
with feedback u = −sgn y

gives one stable and one unstable limit cycle. The left most
intersection corresponds to the stable one.

Periodic Solutions in Relay System

The relay gain N(A) is higher for small A:

orbit

Growing amplitudes

Shrinking relay gain

Stable

periodic

orbit

Unstable

periodic

Growing relay gain

One encirclement

Shrinking amplitudes

Growing relay gain

Small amplitudes

High relay gain

No encirclement

Shrinking amplitudes

Big amplitudes

Small relay gain

No encirclement

Automatic Tuning of PID Controller

Period and amplitude of relay feedback limit cycle can be used for
autotuning.
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Describing Function for a dead-zone relay
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Let e(t) = A sinωt = A sinφ. Then for φ ∈ (0, π)

u(φ) =

{
0, φ ∈ (0, φ0)
D, φ ∈ (φ0, π − φ0)

where φ0 = arcsinD/A (if A ≥ D)

Describing Function for a dead-zone relay–cont’d.

a1 =
1

π

∫ 2π

0
u(φ) cosφ dφ = 0

b1 =
1

π

∫ 2π

0
u(φ) sinφdφ =

4

π

∫ π/2

φ0

D sinφdφ

=
4D

π
cosφ0 =

4D

π

√
1−D2/A2

N(A) =

{
0, A < D
4

πA

√
1−D2/A2, A ≥ D

Plot of Describing Function for dead-zone relay
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Notice that N(A) ≈ 1.3/A for large amplitudes

Pitfalls

Describing function analysis can give erroneous results.

◮ DF analysis may predict a limit cycle, even if it does not exist.

◮ A limit cycle may exist, even if DF analysis does not predict it.

◮ The predicted amplitude and frequency are only
approximations and can be far from the true values.

Example

The control of output power x(t) from a mobile telephone is critical for
good performance. One does not want to use too large power since other
channels are affected and the battery length is decreased. Information
about received power is sent back to the transmitter and is used for
power control. A very simple scheme is given by

ẋ(t) = αu(t)

u(t) = −sign y(t− L), α, β > 0

y(t) = βx(t).

Use describing function analysis to predict possible limit cycles.

y(t) = βx(t)

x(t)

y(t− L)

α
s β e−sL

u(t)

x(t) y(t) y(t− L)

4



Accuracy of Describing Function Analysis

Control loop with friction F = sgn y:

_

_
GC

Friction

yref u

F

y

Corresponds to

G

1 +GC
=

s(s− b)

s3 + 2s2 + 2s+ 1
with feedback u = −sgn y

The oscillation depends on the zero at s = b.

Accuracy of Describing Function Analysis
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DF predicts period times and
ampl. (T,A)b=4/3 = (11.4, 1.00)
and (T,A)b=1/3 =(17.3,0.23)
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Simulation:

(T,A)b=4/3 = (12, 1.1)

(T,A)b=1/3 = (22, 0.28)

Accurate results only if y is sinusoidal!

Analysis of Oscillations—A summary

There exist both time-domain and frequency-domain methods to
analyze oscillations.

Time-domain:

◮ Poincaré maps and Lyapunov functions

◮ Rigorous results but hard to use for large problems

Frequency-domain:

◮ Describing function analysis

◮ Approximate results

◮ Powerful graphical methods

Today’s Goal

To be able to

◮ Derive describing functions for static nonlinearities

◮ Predict stability and existence of periodic solutions through
describing function analysis

Next Lecture

◮ Saturation and antiwindup compensation

◮ Lyapunov analysis of phase locked loops

◮ Friction compensation
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