Lecture 3

> Phase-plane analysis
» Classification of singularities

» Stability of periodic solutions

Material

> Glad and Ljung: Chapter 13
» Khalil: Chapter 2.1-2.3
> Lecture notes

Today’s Goal

You should be able to

> sketch phase portraits for two-dimensional systems

» classify equilibria into nodes, focus, saddle points, and center
points.

» analyze limit cycles through Poincaré maps

First glipse of phase plane portraits: Consider the system

. 2
T =] + T3

To = —T1 — 9

Flow-interpretation: To each point (21, x2) in the plane there is an
associated flow-direction ‘f[—; = f(z1,22)

First glipse of phase plane portraits: Consider the system

. 2
T =] + T2

i‘g = —I1 — X2

In the point (21, 22) = (1, 2) the vector field is pointing in the
direction (1242, —1 —2) =(3, —3).

Linear Systems Revival

d X _ T
il =L

Analytic solution:  z(t) = eA*2(0).

If A is diagonalizable, then

At 0 _
eM=veltyt = [v1 vz} {eo esz} [vl Uz] !

where vy, vy are the eigenvectors of A (Avr = Avq ete).

Matlab:
>> [V,Lambdal=eig(A)

Example: Two real negative eigenvalues

Given the eigenvalues A; < Az < 0, with corresponding

) faster  slower
eigenvectors v1 and wvg, respectively.

A1

Solution: z(t) = c;eMtuy + coe??toy

Fast eigenvalue/vector: x(t) ~ c1eMty + couy for small ¢.
Moves along the fast eigenvector for small ¢

Slow eigenvalue/vector: x(t) ~ coe*2tvy for large t.
Moves along the slow eigenvector towards x = 0 for large ¢

Example—Stable Node

(M, A2) = (=1,-2) and [o) ”ﬂ:{é —11}

v1 is the slow direction and vy is the fast.

Phase Piane

Example—Unstable Focus

. o —w .
I:|: }x, o,w >0, A2 =0 £iw
w o

w =t = [ 1[0 L[4 Y] e

1

In polar coordinates r = \/;r% + x% 0 = arctan xo/zq
(z1 =rcosf, xg =rsinf):




Example- unstable focus cont'd

Mo=1+i Ao =03+i
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Equilibrium Points for Linear Systems

stable node unstable node saddle point
ImA\; =0: A1, A2 <0 A1, A2 >0 A1 <0< X2
ImXA; #0: Re); <0 Re); >0 ReX; =0
stable focus unstable focus center point
T2

A

YR,
%,}Q\/

4 minute exercise

What is the phase portrait if \y = Ao ?

Linear Time-Varying Systems (warning)

Warning: Pointwise “Left Half-Plane eigenvalues” of A(t)
(i.e., time-varying systems) do NOT impose stability!!!

B ~1+acos?’t 1—asintcost
At) = < —1—asintcost —1+ asin®t )" a>0

Pointwise eigenvalues are given by

a—2++vaz—4

Alt) = A >

which are in the LHP for 0 < @ < 2 (and here even constant). However,

(a—1)t —t o3
() = ( e cost e tsint )w(()),

—ele=Dtgint e tcost

which is an unbounded solution for o > 1.

Phase-Plane Analysis for Nonlinear Systems

Close to equilibria “nonlinear system” ~ “linear system”.
Theorem Assume
&= f(x)

is linearized at x( so that
&= Az + g(x),

1 g(x)—g(zo)
where g € C* and To=zoll — 0 as x — x.
If 2= Az has a focus, node, or saddle point, then & = f(z) has
the same type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system has
either a center or a focus.

How to Draw Phase Portraits

If done by hand then

. Try to find possible limit cycles

1. Find equilibria (also called singularities)

2. Sketch local behavior around equilibria

3. Sketch (i1, d2) for some other points. Use that ZTZ; = %
4

5

. Guess solutions

Matlab: pptool6/pptool7, dfield6/dfield7, dee,
ICTools, etc.

PPTool and some other tools for Matlab is available on or via

http://www.control.lth.se/course/FRTNOS

Phase-Locked Loop

A PLL tracks phase 6i,(t) of a signal sin(t) = Asinjwt + 6n(¢)].

Sin uaout”

] Phase ;
Detector Filter VCO

!

Oin & . K éout 1 Oout
—=(D~| sin() 1+sT s

Singularity Analysis of PLL

Let 21(t) = Oout(t) and z2(t) = éout(t).
Assume K, T > 0 and 60;,(¢) = 6, constant.

j?1 =X
d9 =T oo+ KT™! sin(6n — 1)

Singularities are (6i, + n, 0), since

1 =0=a20=0
9 =0=sin(ly, — 1) =0= 21 =0 +n7w




Singularity Classification of Linearized System

Linearization gives the following characteristic equations:

n_even:

N+T AN+ KT =0
K > (4T)71 gives stable focus
0 < K < (4T)7! gives stable node
n _odd:
MN4TIN-KT =0
Saddle points for all K, T > 0

Phase-Plane for PLL

K =1/2, T =1: Focus (2km,0), saddle points ((2k + 1), 0)

Phase Plane

Summary

Phase-plane analysis limited to second-order systems (sometimes it
is possible for higher-order systems to fix some states)

Many dynamical systems of order three and higher not fully
understood (chaotic behaviors etc.)

Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

Tpt1 = flak)
is asymptotically stable at * if the linearization

of

—=| has all eigenvalues in |\| <1
0x |z

(that is, within the unit circle).

Example (cont'd): Numerical iteration

Tpp1 = f(xr)

to find fixed point

Periodic Solutions: z(t + T) = x(t)

Example of an asymptotically stable periodic solution:

I =T, — T 7x1(mf+m§)

By = o1 4+ 9 — za(2? + 23)

Phase Plane

Periodic solution: Polar coordinates.

Let
x1 =rcos = dx; = cosfdr — rsinfdd
rg =rsind = dry = sinfdr + rcos0db
=
T:' _l rcosf rsinf T
9 ) r\ —sin@ cosf o
Now .
&1 =7r(1—7r?)cosd —rsinf
#y =7r(1—r?)sind + rcosf
which gives

F=r(1-1%
6=1

Only 7 =1 is a stable equilibrium!

A system has a periodic solution if for some T > 0

z(t+T)=ua(t), Vt>0

Note that a constant value for 2(¢) by convention not is regarded
as periodic.

» When does a periodic solution exist?

» When is it locally (asymptotically) stable? When is it globally
asymptotically stable?




Poincaré map (“Stroboscopic map”)

= f(x), zeR"”
©t(q) is the solution starting in ¢ after time ¢.
¥ C R™ ! is a hyperplane transverse to ;.

The Poincaré map P : ¥ — X is

P(q) = 79 (0), 7(q) is the first return time

wi(q)

Limit Cycles

*

If a simple periodic orbit pass through ¢*, then P(¢*) = ¢*.

Such an orbit is called a limit cycle.
q* is called a fixed point of P.

P(g")=q"

Does the iteration qx+1 = P(qx) converge to ¢*7

Locally Stable Limit Cycles

The linearization of P around ¢* gives a matrix W = %—I; so
o

(ak+1—q") = Wiar — q%),
if g is close to ¢*.

> If all [X\;(W)| < 1, then the corresponding limit cycle is locally
asymptotically stable.

> If [X;(W)| > 1, then the limit cycle is unstable.

Linearization Around a Periodic Solution

The linearization of

#(t) = f(=(t))

around zo(t) = zo(t +T) is

it)=A

®)(t)
of
oz

At) = —=(z0(t)) = At +T)

P is the map from the solution at ¢t = 0 to ¢t = 7(q).

Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

7 =r(l—1?)

=1

Choose ¥ = {(r,0) : r > 0,0 = 2nk}.

The solution is
lronto) = (114 (5% = e 146 )

First return time from any point (ro,6p) € X is 7(ro, o) = 27.

Example—Stable Unit Circle

The Poincaré map is
P(ro) = [1+ (ry? — 1)e~ 22771/

ro = 1 is a fixed point.

The limit cycle that corresponds to r(t) = 1 and 0(t) = ¢ is locally
asymptotically stable, because

W= 5o = e ]

o
and
W=

dP _
o] =l <1

Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?

The Hand Saw—Poincaré Map

i] = T2
. 1 2 . .
To9 = Z g+ aw”sinxs | Sinx

z3(t) =w

Choose ¥ = {x3 = 27k}.




The Hand Saw—Poincaré Map

q¢* =0 and T = 27 /w. No explicit expression for P. It is, however,
easy to determine W numerically. Do two (or preferably many
more) different simulations with different, small, initial conditions
z(0) =y and z(0) = z.

Solve W through (least squares solution of)

T) 1(0)=z] =W [y Z]

This gives for @ = 1cm, ¢ = 17cm, w = 180

137 0.035
W= [—3.86 0.630]

[x(T)

z(0)=y

which has eigenvalues (1.047,0.955). Unstable.
W is stable for w > 183

The Hand Saw—Stability Condition

Make the assumptions that
{>a and a?>g

Then some calculations show that the Poincaré map is stable at

q¢* = 0 when
V290
a

w >

a=1cmand £ =17 cm give w > 182.6 rad/s (29 Hz).

The Hand Saw—Simulation

Simulation results give good agreement

05 w =183

-0.5]

-1

1000

500 w =182

Next Lecture

» Lyapunov methods for stability analysis

Lyapunov generalized the idea of: If the total energy is dissipated
along the trajectories (i.e the solution curves), the system must be
stable.

Benefit: Might conclude that a system is stable or asymptotically
stable without solving the nonlinear differential equation.

Lab 1: sign-up starts on Monday
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